Phenotypic screening is a powerful approach to identify novel antibiotics, but elucidation of the targets responsible for the antimicrobial activity is often challenging in the case of compounds with a polypharmacological mode of action. Here, we show that activity-based protein profiling maps the target interaction landscape of a series of 1,3,4-oxadiazole-3-ones identified in a phenotypic screen to have high antibacterial potency against multidrug-resistant Staphylococcus aureus. In situ competitive and comparative chemical proteomics with a tailor-made activity-based probe, in combination with transposon and resistance studies, revealed several cysteine and serine hydrolases as relevant targets. Our data showcase oxadiazolones as a novel antibacterial chemotype with a polypharmacological mode of action, in which FabH, FphC, and AdhE play a central role.
INTRODUCTION: Lipids and fatty acids are key components in metabolic processes of the human placenta, thereby contributing to the development of the fetus. Placental dyslipidemia and aberrant activity of lipases have been linked to diverse pregnancy associated complications, such as preeclampsia and preterm birth. The serine hydrolases, diacylglycerol lipase alpha and beta (DAGLalpha, DAGLbeta) catalyze the degradation of diacylglycerols, leading to the formation of monoacylglycerols (MAG), including one main endocannabinoid 2-arachidonoylglycerol (2-AG). The major role of DAGL in the biosynthesis of 2-AG is evident from various studies in mice but has not been investigated in the human placenta. Here, we report the use of the small molecule inhibitor DH376, in combination with the ex vivo placental perfusion system, activity-based protein profiling (ABPP) and lipidomics, to determine the impact of acute DAGL inhibition on placental lipid networks. METHODS: DAGLalpha and DAGLbeta mRNA expression was detected by RT-qPCR and in situ hybridization in term placentas. Immunohistochemistry staining for CK7, CD163 and VWF was applied to localize DAGLbeta transcripts to different cell types of the placenta. DAGLbeta activity was determined by in- gel and MS-based activity-based protein profiling (ABPP) and validated by addition of the enzyme inhibitors LEI-105 and DH376. Enzyme kinetics were measured by EnzChek lipase substrate assay. Ex vivo placental perfusion experiments were performed +/- DH376 [1 microM] and changes in tissue lipid and fatty acid profiles were measured by LC-MS. Additionally, free fatty acid levels of the maternal and fetal circulations were determined. RESULTS: We demonstrate that mRNA expression of DAGLbeta prevails in placental tissue, compared to DAGLalpha (p >= 0.0001) and that DAGLbeta is mainly located to CK7 positive trophoblasts (p >= 0.0001). Although few DAGLalpha transcripts were identified, no active enzyme was detected applying in-gel or MS-based ABPP, which underlined that DAGLbeta is the principal DAGL in the placenta. DAGLbeta dependent substrate hydrolysis in placental membrane lysates was determined by the application of LEI-105 and DH376. Ex vivo pharmacological inhibition of DAGLbeta by DH376 led to reduced MAG tissue levels (p >= 0.01), including 2-AG (p>=0.0001). We further provide an activity landscape of serine hydrolases, showing a broad spectrum of metabolically active enzymes in the human placenta. DISCUSSION: Our results emphasize the role of DAGLbeta activity in the human placenta by determining the biosynthesis of 2-AG. Thus, this study highlights the special importance of intra-cellular lipases in lipid network regulation. Together, the activity of these specific enzymes may contribute to the lipid signaling at the maternal-fetal interface, with implications for function of the placenta in normal and compromised pregnancies.
The development of new treatment options for bacterial infections requires access to new targets for antibiotics and antivirulence strategies. Chemoproteomic approaches are powerful tools for profiling and identifying novel druggable target candidates, but their functions often remain uncharacterized. Previously, we used activity-based protein profiling in the opportunistic pathogen Staphylococcus aureus to identify active serine hydrolases termed fluorophosphonate-binding hydrolases (Fph). Here, we provide the first characterization of S. aureus FphH, a conserved, putative carboxylesterase (referred to as yvaK in Bacillus subtilis) at the molecular and cellular level. First, phenotypic characterization of fphH-deficient transposon mutants revealed phenotypes during growth under nutrient deprivation, biofilm formation, and intracellular survival. Biochemical and structural investigations revealed that FphH acts as an esterase and lipase based on a fold well suited to act on a small to long hydrophobic unbranched lipid group within its substrate and can be inhibited by active site-targeting oxadiazoles. Prompted by a previous observation that fphH expression was upregulated in response to fusidic acid, we found that FphH can deacetylate this ribosome-targeting antibiotic, but the lack of FphH function did not infer major changes in antibiotic susceptibility. In conclusion, our results indicate a functional role of this hydrolase in S. aureus stress responses, and hypothetical functions connecting FphH with components of the ribosome rescue system that are conserved in the same gene cluster across Bacillales are discussed. Our atomic characterization of FphH will facilitate the development of specific FphH inhibitors and probes to elucidate its physiological role and validity as a drug target.
The endocannabinoids anandamide and 2-arachidonoylglycerol are not only metabolized by serine hydrolases, such as fatty acid amide hydrolase, monoacylglycerol lipase, and alpha,beta-hydrolases 6 and 12, but they also serve as substrates for cyclooxygenases, cytochrome P450s, and lipoxygenases. These enzymes oxygenate the 1Z,4Z-pentadiene system of the arachidonic acid backbone of endocannabinoids, thereby giving rise to an entirely new array of bioactive lipids. Hereby, a protocol is provided for the enzymatic synthesis, purification, and characterization of various oxygenated metabolites of anandamide generated by lipoxygenases, which enables the biological study and detection of these metabolites.
Monoacylglycerol lipase (MAGL) is a gatekeeper in regulating endocannabinoid signaling and has gained substantial attention as a therapeutic target for neurological disorders. We recently discovered a morpholin-3-one derivative as a novel scaffold for imaging MAGL via positron emission tomography (PET). However, its slow kinetics in vivo hampered the application. In this study, structural optimization was conducted and eleven novel MAGL inhibitors were designed and synthesized. Based on the results from MAGL inhibitory potency, in vitro metabolic stability and surface plasmon resonance assays, we identified compound 7 as a potential MAGL PET tracer candidate. [(11)C]7 was synthesized via direct (11)CO(2) fixation method and successfully mapped MAGL distribution patterns on rodent brains in in vitro autoradiography. PET studies in mice using [(11)C]7 demonstrated its improved kinetic profile compared to the lead structure. Its high specificity in vivo was proved by using MAGL KO mice. Although further studies confirmed that [(11)C]7 is a P-glycoprotein (P-gp) substrate in mice, its low P-gp efflux ratio on cells transfected with human protein suggests that it should not be an issue for the clinical translation of [(11)C]7 as a novel reversible MAGL PET tracer in human subjects. Overall, [(11)C]7 ([(11)C]RO7284390) showed promising results warranting further clinical evaluation.
        
Title: Targeting Endocannabinoid Signaling: FAAH and MAG Lipase Inhibitors van Egmond N, Straub VM, van der Stelt M Ref: Annual Review of Pharmacology & Toxicology, 61:441, 2021 : PubMed
Inspired by the medicinal properties of the plant Cannabis sativa and its principal component (-)-trans-delta(9)-tetrahydrocannabinol (THC), researchers have developed a variety of compounds to modulate the endocannabinoid system in the human brain. Inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), which are the enzymes responsible for the inactivation of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol, respectively, may exert therapeutic effects without inducing the adverse side effects associated with direct cannabinoid CB(1) receptor stimulation by THC. Here we review the FAAH and MAGL inhibitors that have reached clinical trials, discuss potential caveats, and provide an outlook on where the field is headed.
ABHD2 is a serine hydrolase that belongs to the subgroup of the alpha,beta-hydrolase fold-containing proteins, which is involved in virus propagation, immune response, and fertilization. Chemical tools to selectively modulate the activity of ABHD2 in an acute setting are highly desired to investigate its biological role, but are currently lacking. Here, we report a library-versus-library screening using activity-based protein profiling (ABPP) to evaluate in parallel the selectivity and activity of a focused lipase inhibitor library against ABHD2 and a panel of closely related ABHD proteins. This screen resulted in the rapid identification of novel inhibitors for ABHD2. The selectivity of the inhibitor was further investigated in native mouse testis proteome by competitive ABPP, revealing a highly restricted off-target profile. The progesterone-induced acrosome reaction was reduced in a dose-dependent manner by the newly identified inhibitor, which provides further support for the key-role of ABHD2 in the P4-stimulated acrosome reaction. On this basis, the ABHD2 inhibitor is an excellent starting point for further optimization of ABHD2 inhibitors that can modulate sperm fertility and may lead to novel contraceptives.
Phospholipase A2, group XVI (PLA2G16) is a thiol hydrolase from the HRASLS family that regulates lipolysis in adipose tissue and has been identified as a host factor enabling the cellular entry of picornaviruses. Chemical tools are essential to visualize and control PLA2G16 activity, but they have not been reported to date. Here, we show that MB064, which is a fluorescent lipase probe, also labels recombinant and endogenously expressed PLA2G16. Competitive activity-based protein profiling (ABPP) using MB064 enabled the discovery of alpha-ketoamides as the first selective PLA2G16 inhibitors. LEI110 was identified as a potent PLA2G16 inhibitor ( K(i) = 20 nM) that reduces cellular arachidonic acid levels and oleic acid-induced lipolysis in human HepG2 cells. Gel-based ABPP and chemical proteomics showed that LEI110 is a selective pan-inhibitor of the HRASLS family of thiol hydrolases (i.e., PLA2G16, HRASLS2, RARRES3 and iNAT). Molecular dynamic simulations of LEI110 in the reported crystal structure of PLA2G16 provided insight in the potential ligand-protein interactions to explain its binding mode. In conclusion, we have developed the first selective inhibitor that can be used to study the cellular role of PLA2G16.
The endocannabinoid 2-arachidonoylglycerol (2-AG) is involved in neuronal differentiation. This study aimed to identify the biosynthetic enzymes responsible for 2-AG production during retinoic acid (RA)-induced neurite outgrowth of Neuro-2a cells. First, we confirmed that RA stimulation of Neuro-2a cells increases 2-AG production and neurite outgrowth. The diacylglycerol lipase (DAGL) inhibitor DH376 blocked 2-AG production and reduced neuronal differentiation. Surprisingly, CRISPR/Cas9-mediated knockdown of DAGLalpha and DAGLbeta in Neuro-2a cells did not reduce 2-AG levels, suggesting another enzyme capable of producing 2-AG in this cell line. Chemical proteomics revealed DAGLbeta and alpha,beta-hydrolase domain containing protein (ABHD6) as the only targets of DH376 in Neuro-2a cells. Biochemical, genetic and lipidomic studies demonstrated that ABHD6 possesses DAGL activity in conjunction with its previously reported monoacylglycerol lipase activity. RA treatment of Neuro-2a cells increased by three-fold the amount of active ABHD6. Our study shows that ABHD6 exhibits significant DAG lipase activity in Neuro-2a cells in addition to its known MAG lipase activity and suggest it is involved in neuronal differentiation.
Endocannabinoids, an important class of signaling lipids involved in health and disease, are predominantly synthesized and metabolized by enzymes of the serine hydrolase superfamily. Activity-based protein profiling (ABPP) using fluorescent probes, such as fluorophosphonate (FP)-TAMRA and beta-lactone-based MB064, enables drug discovery activities for serine hydrolases. FP-TAMRA and MB064 have distinct, albeit partially overlapping, target profiles but cannot be used in conjunction due to overlapping excitation/emission spectra. We therefore synthesized a novel FP-probe with a green BODIPY as a fluorescent tag and studied its labeling profile in mouse proteomes. Surprisingly, we found that the reporter tag plays an important role in the binding potency and selectivity of the probe. A multiplexed ABPP assay was developed in which a probe cocktail of FP-BODIPY and MB064 visualized most endocannabinoid serine hydrolases in mouse brain proteomes in a single experiment. The multiplexed ABPP assay was employed to profile endocannabinoid hydrolase inhibitor activity and selectivity in the mouse brain.
        
Title: Activity-Based Protein Profiling Delivers Selective Drug Candidate ABX-1431, a Monoacylglycerol Lipase Inhibitor, To Control Lipid Metabolism in Neurological Disorders Jiang M, van der Stelt M Ref: Journal of Medicinal Chemistry, 61:9059, 2018 : PubMed
Monoacylglycerol lipase (MGLL or MAGL) is a critical point of regulation of both endocannabinoid and eicosanoid signaling pathways in the brain, thereby providing novel therapeutic opportunities for neurological and neurodegenerative diseases. In this issue Cisar et al. disclose the discovery, optimization, and initial preclinical profiling of ABX-1431, a covalent, irreversible MGLL inhibitor. Activity-based protein profiling was key to the discovery of ABX-1431. ABX-1431 is a first-in-class experimental drug that was well-tolerated and safe in phase 1 clinical studies. Data from an exploratory phase 1b study indicate that it has the potential to treat symptoms of adult patients with syndrome of Gilles de la Tourette. ABX-1431 is currently entering clinical phase 2 studies for this neurological disorder as well as for other indications, such as neuromyeltis optica and multiple sclerosis.
The endocannabinoid system (ECS) is considered to be an endogenous protective system in various neurodegenerative diseases. Niemann-Pick type C (NPC) is a neurodegenerative disease in which the role of the ECS has not been studied yet. Most of the endocannabinoid enzymes are serine hydrolases, which can be studied using activity-based protein profiling (ABPP). Here, we report the serine hydrolase activity in brain proteomes of a NPC mouse model as measured by ABPP. Two ABPP methods are used: a gel-based method and a chemical proteomics method. The activities of the following endocannabinoid enzymes were quantified: diacylglycerol lipase (DAGL) alpha, alpha/beta-hydrolase domain-containing protein 4, alpha/beta-hydrolase domain-containing protein 6, alpha/beta-hydrolase domain-containing protein 12, fatty acid amide hydrolase, and monoacylglycerol lipase. Using the gel-based method, two bands were observed for DAGL alpha. Only the upper band corresponding to this enzyme was significantly decreased in the NPC mouse model. Chemical proteomics showed that three lysosomal serine hydrolase activities (retinoid-inducible serine carboxypeptidase, cathepsin A, and palmitoyl-protein thioesterase 1) were increased in Niemann-Pick C1 protein knockout mouse brain compared to wild-type brain, whereas no difference in endocannabinoid hydrolase activity was observed. We conclude that these targets might be interesting therapeutic targets for future validation studies.
Diacylglycerol lipases (DAGL) are responsible for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol. The fluorescent activity-based probes DH379 and HT-01 have been previously shown to label DAGLs and to cross-react with the serine hydrolase ABHD6. Here, we report the synthesis and characterization of two new quenched activity-based probes 1 and 2, the design of which was based on the structures of DH379 and HT-01, respectively. Probe 1 contains a BODIPY-FL and a 2,4-dinitroaniline moiety as a fluorophore-quencher pair, whereas probe 2 employs a Cy5-fluorophore and a cAB40-quencher. The fluorescence of both probes was quenched with relative quantum yields of 0.34 and 0.0081, respectively. The probes showed target inhibition as characterized in activity-based protein profiling assays using human cell- and mouse brain lysates, but were unfortunately not active in living cells, presumably due to limited cell permeability.
Activity-based protein profiling (ABPP) has emerged as a valuable chemical proteomics method to guide the therapeutic development of covalent drugs by assessing their on-target engagement and off-target activity. We recently used ABPP to determine the serine hydrolase interaction landscape of the experimental drug BIA 10-2474, thereby providing a potential explanation for the adverse side effects observed with this compound. ABPP allows mapping of protein interaction landscapes of inhibitors in cells, tissues and animal models. Whereas our previous protocol described quantification of proteasome activity using stable-isotope labeling, this protocol describes the procedures for identifying the in vivo selectivity profile of covalent inhibitors with label-free quantitative proteomics. The optimization of our protocol for label-free quantification methods results in high proteome coverage and allows the comparison of multiple biological samples. We demonstrate our protocol by assessing the protein interaction landscape of the diacylglycerol lipase inhibitor DH376 in mouse brain, liver, kidney and testes. The stages of the protocol include tissue lysis, probe incubation, target enrichment, sample preparation, liquid chromatography-mass spectrometry (LC-MS) measurement, data processing and analysis. This approach can be used to study target engagement in a native proteome and to identify potential off targets for the inhibitor under investigation. The entire protocol takes at least 4 d, depending on the number of samples.
        
Title: Competitive ABPP of Serine Hydrolases: A Case Study on DAGL-Alpha Baggelaar MP, van der Stelt M Ref: Methods Mol Biol, 1491:161, 2017 : PubMed
Competitive activity-based protein profiling is a highly efficient chemical biology technique to determine target engagement and selectivity profiles of enzyme inhibitors in complex proteomes. Fluorophosphonate-based fluorescent inhibitors are widely used as broad-spectrum probes for serine hydrolases. However, diacylglycerol lipase-alpha is not labeled by fluorophosphonate-based probes. To overcome this problem, we have developed a tailor-made activity-based probe that reacts with diacylglycerol lipase-alpha. Here we describe a case study in which we apply competitive activity-based protein profiling using a broad-spectrum and a tailor-made activity-based probe to establish selectivity and activity profiles of inhibitors targeting diacylglycerol lipase-alpha in the mouse brain proteome.
The biosynthetic and catabolic enzymes of the endocannabinoids tightly regulate endocannabinoid-mediated activation of the cannabinoid CB1 receptor. Monitoring the activities of these endocannabinoid hydrolases in different brain regions is, therefore, key to gaining insight into spatiotemporal control of CB1 receptor-mediated physiology. We have employed a comparative chemical proteomics approach to quantitatively map the activity profile of endocannabinoid hydrolases in various mouse brain regions at the same time. To this end, we used two different activity-based probes: fluorophosphonate-biotin (FP-biotin), which quantifies FAAH, ABHD6, and MAG-lipase activity, and MB108, which detects DAGL-alpha, ABHD4, ABHD6, and ABHD12. In total, 32 serine hydrolases were evaluated in the frontal cortex, hippocampus, striatum, and cerebellum. Comparison of endocannabinoid hydrolase activity in the four brain regions revealed that FAAH activity was highest in the hippocampus, and MAGL activity was most pronounced in the frontal cortex, whereas DAGL-alpha was most active in the cerebellum. Comparison of the activity profiles with a global proteomics data set revealed pronounced differences. This could indicate that post-translational modification of the endocannabinoid hydrolases is important to regulate their activity. Next, the effect of genetic deletion of the CB1 receptor was studied. No difference in the enzymatic activity was found in the cerebellum, striatum, frontal cortex, and hippocampus of CB1 receptor knockout animals compared to wild type mice. Our results are in line with previous reports and indicate that the CB1 receptor exerts no regulatory control over the basal production and degradation of endocannabinoids and that genetic deletion of the CB1 receptor does not induce compensatory mechanisms in endocannabinoid hydrolase activity.
Triazole ureas constitute a versatile class of irreversible inhibitors that target serine hydrolases in both cells and animal models. We have previously reported that triazole ureas can act as selective and CNS-active inhibitors for diacylglycerol lipases (DAGLs), enzymes responsible for the biosynthesis of 2-arachidonoylglycerol (2-AG) that activates cannabinoid CB1 receptor. Here, we report the enantio- and diastereoselective synthesis and structure-activity relationship studies. We found that 2,4-substituted triazole ureas with a biphenylmethanol group provided the most optimal scaffold. Introduction of a chiral ether substituent on the 5-position of the piperidine ring provided ultrapotent inhibitor 38 (DH376) with picomolar activity. Compound 38 temporarily reduces fasting-induced refeeding of mice, thereby emulating the effect of cannabinoid CB1-receptor inverse agonists. This was mirrored by 39 (DO34) but also by the negative control compound 40 (DO53) (which does not inhibit DAGL), which indicates the triazole ureas may affect the energy balance in mice through multiple molecular targets.
Inhibitors of diacylglycerol lipases and alpha,beta-hydrolase domain containing protein 6 (ABHD6) are potential leads for the development of therapeutic agents for metabolic and neurodegenerative disorders. Here, we report the enantioselective synthesis and structure activity relationships of triazole ureas featuring chiral, hydroxylated 2-benzylpiperidines as dual inhibitors of DAGLalpha and ABHD6. The chirality of the carbon bearing the C2 substituent, as well as the position of the hydroxyl (tolerated at C5, but not at C3) has profound influence on the inhibitory activity of both DAGLalpha and ABHD6, as established using biochemical assays and competitive activity-based protein profiling on mouse brain extracts.
The cannabinoid CB2 receptor (CB2R) represents a promising therapeutic target for various forms of tissue injury and inflammatory diseases. Although numerous compounds have been developed and widely used to target CB2R, their selectivity, molecular mode of action and pharmacokinetic properties have been poorly characterized. Here we report the most extensive characterization of the molecular pharmacology of the most widely used CB2R ligands to date. In a collaborative effort between multiple academic and industry laboratories, we identify marked differences in the ability of certain agonists to activate distinct signalling pathways and to cause off-target effects. We reach a consensus that HU910, HU308 and JWH133 are the recommended selective CB2R agonists to study the role of CB2R in biological and disease processes. We believe that our unique approach would be highly suitable for the characterization of other therapeutic targets in drug discovery research.
A recent phase 1 trial of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474 led to the death of one volunteer and produced mild-to-severe neurological symptoms in four others. Although the cause of the clinical neurotoxicity is unknown, it has been postulated, given the clinical safety profile of other tested FAAH inhibitors, that off-target activities of BIA 10-2474 may have played a role. Here we use activity-based proteomic methods to determine the protein interaction landscape of BIA 10-2474 in human cells and tissues. This analysis revealed that the drug inhibits several lipases that are not targeted by PF04457845, a highly selective and clinically tested FAAH inhibitor. BIA 10-2474, but not PF04457845, produced substantial alterations in lipid networks in human cortical neurons, suggesting that promiscuous lipase inhibitors have the potential to cause metabolic dysregulation in the nervous system.
Diacylglycerol lipases (DAGLalpha and DAGLbeta) convert diacylglycerol to the endocannabinoid 2-arachidonoylglycerol. Our understanding of DAGL function has been hindered by a lack of chemical probes that can perturb these enzymes in vivo. Here, we report a set of centrally active DAGL inhibitors and a structurally related control probe and their use, in combination with chemical proteomics and lipidomics, to determine the impact of acute DAGL blockade on brain lipid networks in mice. Within 2 h, DAGL inhibition produced a striking reorganization of bioactive lipids, including elevations in DAGs and reductions in endocannabinoids and eicosanoids. We also found that DAGLalpha is a short half-life protein, and the inactivation of DAGLs disrupts cannabinoid receptor-dependent synaptic plasticity and impairs neuroinflammatory responses, including lipopolysaccharide-induced anapyrexia. These findings illuminate the highly interconnected and dynamic nature of lipid signaling pathways in the brain and the central role that DAGL enzymes play in regulating this network.
The endocannabinoids anandamide and 2-arachidonoylglycerol are not only metabolized by serine hydrolases, such as fatty acid amide hydrolase, monoacylglycerol lipase, and alpha,beta-hydrolases 6 and 12, but they also serve as substrates for cyclooxygenases and lipoxygenases. These enzymes oxygenate the 1Z,4Z-pentadiene system of the arachidonic acid backbone of endocannabinoids, thereby giving rise to an entirely new array of bioactive lipids. Hereby, a protocol is provided for the enzymatic synthesis, purification, and characterization of various oxygenated metabolites of anandamide generated by lipoxygenases, which enables the biological study and detection of these metabolites.
Diacylglycerol lipase (DAGL)-alpha and -beta are enzymes responsible for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). Selective and reversible inhibitors are required to study the function of DAGLs in neuronal cells in an acute and temporal fashion, but they are currently lacking. Here, we describe the identification of a highly selective DAGL inhibitor using structure-guided and a chemoproteomics strategy to characterize the selectivity of the inhibitor in complex proteomes. Key to the success of this approach is the use of comparative and competitive activity-based proteome profiling (ABPP), in which broad-spectrum and tailor-made activity-based probes are combined to report on the inhibition of a protein family in its native environment. Competitive ABPP with broad-spectrum fluorophosphonate-based probes and specific beta-lactone-based probes led to the discovery of alpha-ketoheterocycle LEI105 as a potent, highly selective, and reversible dual DAGL-alpha/DAGL-beta inhibitor. LEI105 did not affect other enzymes involved in endocannabinoid metabolism including abhydrolase domain-containing protein 6, abhydrolase domain-containing protein 12, monoacylglycerol lipase, and fatty acid amide hydrolase and did not display affinity for the cannabinoid CB1 receptor. Targeted lipidomics revealed that LEI105 concentration-dependently reduced 2-AG levels, but not anandamide levels, in Neuro2A cells. We show that cannabinoid CB1-receptor-mediated short-term synaptic plasticity in a mouse hippocampal slice model can be reduced by LEI105. Thus, we have developed a highly selective DAGL inhibitor and provide new pharmacological evidence to support the hypothesis that "on demand biosynthesis" of 2-AG is responsible for retrograde signaling.
Diacylglycerol lipase alpha (DAGLalpha) is responsible for the formation of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGLalpha inhibitors are required to study the physiological role of 2-AG. Previously, we identified the alpha-ketoheterocycles as potent and highly selective DAGLalpha inhibitors. Here, we present the first comprehensive structure-activity relationship study of alpha-ketoheterocycles as DAGLalpha inhibitors. Our findings indicate that the active site of DAGLalpha is remarkably sensitive to the type of heterocyclic scaffold with oxazolo-4N-pyridines as the most active framework. We uncovered a fundamental substituent effect in which electron-withdrawing meta-oxazole substituents increased inhibitor potency. (C6-C9)-acyl chains with a distal phenyl group proved to be the most potent inhibitors. The integrated SAR data was consistent with the proposed binding pose in a DAGLalpha homology model. Altogether, our results may guide the design of future DAGLalpha inhibitors as leads for molecular therapies to treat neuroinflammation, obesity, and related metabolic disorders.
The endocannabinoid 2-arachidonoylglycerol (2-AG) is predominantly biosynthesized by sn-1-diacylglycerol lipase alpha (DAGL-alpha) in the CNS. Selective inhibitors of DAGL-alpha will provide valuable insights in the role of 2-AG in endocannabinoid signaling processes and are potential therapeutics for the treatment of obesity and neurodegenerative diseases. Here, we describe the development of a natural substrate-based fluorescence assay for DAGL-alpha, using a coupled enzyme approach. The continuous setup of our assay allows monitoring of DAGL-alpha activity in real-time and in a 96-well plate format. This constitutes a major improvement to the currently available radiometric and LC/MS-based methods, which can be executed only in low-throughput formats. In addition, our assay circumvents the use of radioactive material. We demonstrate that our assay can be used to screen inhibitors of DAGL-alpha activity, using 1-stearoyl-2-arachidonoyl-sn-glycerol as the physiologically relevant natural substrate of DAGL-alpha. Furthermore, our method can be employed to measure DAGL activity and inhibition in the mouse brain membrane proteome. Consequently, our assay should serve as a valuable tool for rapid hit validation and lead optimization of DAGL-alpha inhibitors.
sn-1-Diacylglycerol lipase alpha (DAGL-alpha) is the main enzyme responsible for the production of the endocannabinoid 2-arachidonoylglycerol in the central nervous system. Glycine sulfonamides have recently been identified by a high throughput screening campaign as a novel class of inhibitors for this enzyme. Here, we report on the first structure-activity relationship study of glycine sulfonamide inhibitors and their brain membrane proteome-wide selectivity on serine hydrolases with activity-based protein profiling (ABPP). We found that (i) DAGL-alpha tolerates a variety of biaryl substituents, (ii) the sulfonamide is required for inducing a specific orientation of the 2,2-dimethylchroman substituent, and (iii) a carboxylic acid is essential for its activity. ABPP revealed that the sulfonamide glycine inhibitors have at least three off-targets, including alpha/beta-hydrolase domain 6 (ABHD6). Finally, we identified LEI-106 as a potent, dual DAGL-alpha/ABHD6 inhibitor, which makes this compound a potential lead for the discovery of new molecular therapies for diet-induced obesity and metabolic syndrome.