2 reference(s) found. Listing paper details in reverse chronological order. We are grateful to Keith Bradnam for improvment of this script
Title: Aryl-phosphorus-containing flame retardants induce oxidative stress, the p53-dependent DNA damage response and mitochondrial impairment in A549 cells Yuan S, Han Y, Ma M, Rao K, Wang Z, Yang R, Liu Y, Zhou X Ref: Environ Pollut, 250:58, 2019 : PubMed
Aryl phosphorus-containing flame retardants (aryl-PFRs) have been frequently detected with increasingly used worldwide as one of alternatives for brominated flame retardants. However, information on their adverse effects on human health and ecosystem is insufficient, with limited study on their molecular mode of action insvitro. In this study, the cytotoxicity, DNA damage, mitochondrial impairment and the involved molecular mechanisms of certain frequently detectable aryl-PFRs, including 2-ethylhexyldiphenyl phosphate (EHDPP), methyl diphenyl phosphate (MDPP), bisphenol-A bis (diphenyl phosphate) (BDP), isodecyl diphenyl phosphate (IDPP), cresyl diphenyl phosphate (CDP) and the structurally similar and widely used organophosphorus pesticide chlorpyrifos (CPF), were evaluated in A549 cells using high-content screening (HCS) system. Aryl-PFRs showed different lethal concentration 50 (LC50) values ranging from 97.94 to 546.85 microM in A549 cells using CCK-8 assay. EHDPP, IDPP, CDP, MDPP and CPF demonstrated an ability to induce DNA damage, evidenced by increased DNA content and S phase-reducing cell cycle arrest effect using fluorophore dye cocktail assay. Additionally, the selected aryl-PFRs induced mitochondrial impairment by the increasing mitochondrial mass and decreasing mitochondrial membrane potential. Moreover, BDP, MDPP, and CDP, which contain short alkyl chains showed their potential oxidative stress with intracellular ROS and mitochondrial superoxide overproduction from an initially relatively low concentration. Additionally, based on the promotion of firefly luminescence in p53-transfected A549 cells, p53 activation was found to be involved in aryl-PFRs-induced DNA damage. Further real-time PCR results showed that all selected aryl-PFRs triggered p53/p21/gadd45beta-, and p53/p21/mdm2-mediated cell cycle pathways, and the p53/bax mediated apoptosis pathway to induce DNA damage and cytotoxic effects. These results suggest that aryl-PFRs (e.g., BDP, MDPP, CDP) cause oxidative stress-mediated DNA damage and mitochondrial impairment, and p53-dependent pathway was involved in the aryl-PFRs-induced DNA damage and cell cycle arrest. In conclusion, this study improves the understanding of PFRs-induced adverse outcomes and the involved molecular mechanism.
        
Title: Structural requirements for the inhibition of human monocyte carboxylesterase by organophosphorus compounds Saboori AM, Lang DM, Newcombe DS Ref: Chemico-Biological Interactions, 80:327, 1991 : PubMed
Human blood monocyte carboxylesterase (CBE) is inhibited by a variety of organophosphorus compounds including arylphosphates and arylphosphites and some alkylphosphites. Triphenyl phosphate and triphenyl phosphite with Ki values of 8 x 10(-9) M and 4.8 x 10(-8) M, respectively, are the most potent inhibitors of this enzyme evaluated by this study. The arylphosphates vary in their capacity to inhibit carboxylesterase activity. Diphenyl phosphate with its strong negative charge is not a potent inhibitor (Ki = 1 x 10(-4) M), whereas if its negative charge is neutralized, as in diphenyl methyl phosphate, its capacity to inhibit carboxylesterase is significantly increased. Compounds with increased bulk, such as trinaphthyl phosphate, only inhibit the enzyme at concentrations of 10(-5) M or greater. Arylphosphites have inhibitory capacities similar to the arylphosphates. Alkylphosphites (tributyl phosphite/triethyl phosphite) inhibit carboxylesterase activity, whereas alkylphosphates (tributyl phosphate/triethyl phosphate) have no inhibitory effect. Arylphosphines and arylphosphine oxides do not inhibit carboxylesterase activity. This study demonstrates that organophosphates and organophosphites are relatively effective inhibitors of human monocyte CBE activity with the exception of the alkylphosphates which have no inhibitory activity. We conclude that molecular bulk and charge have a significant role in determining the potency of organophosphorus inhibitors of monocyte CBE. The observed variations in the degree of esterase inhibition by organophosphorus compounds as well as the differences in the pathological expression of neuropathic disorders associated with such chemicals suggest that different esterase enzymes derived from the family of esterase genes may mediate the different neuropathies observed with organophosphorus exposures. Such data also provide the rationale for the kinetic analyses of esterases and the design of non-toxic organophosphorus compounds with low or no monocyte CBE inhibitory capacity to reduce the potential of these commonly used chemicals for human toxicity.