Menyhard DK, Kiss-Szeman A, Tichy-Racs E, Hornung B, Radi K, Szeltner Z, Domokos K, Szamosi I, Naray-Szabo G, Polgar L, Harmat V (2013)
A self-compartmentalizing hexamer serine protease from Pyrococcus horikoshii: substrate selection achieved through multimerization
Journal of Biological Chemistry 288: 17884

Szeltner Z, Juhasz T, Szamosi I, Rea D, Fulop V, Modos K, Juliano L, Polgar L (2012)
The loops facing the active site of prolyl oligopeptidase are crucial components in substrate gating and specificity
Biochimica & Biophysica Acta 1834: 98

Harmat V, Domokos K, Menyhard DK, Pallo A, Szeltner Z, Szamosi I, Beke-Somfai T, Naray-Szabo G, Polgar L (2011)
Structure and catalysis of acylaminoacyl peptidase: closed and open subunits of a dimer oligopeptidase
Journal of Biological Chemistry 286: 1987

Szeltner Z, Morawski M, Juhasz T, Szamosi I, Liliom K, Csizmok V, Tolgyesi F, Polgar L (2010)
GAP43 shows partial co-localisation but no strong physical interaction with prolyl oligopeptidase
Biochimica & Biophysica Acta 1804: 2162

Szeltner Z, Kiss AL, Domokos K, Harmat V, Naray-Szabo G, Polgar L (2009)
Characterization of a novel acylaminoacyl peptidase with hexameric structure and endopeptidase activity
Biochimica & Biophysica Acta 1794: 1204

Kiss AL, Pallo A, Naray-Szabo G, Harmat V, Polgar L (2008)
Structural and kinetic contributions of the oxyanion binding site to the catalytic activity of acylaminoacyl peptidase
J Struct Biol 162: 312

Szeltner Z, Polgar L (2008)
Structure, function and biological relevance of prolyl oligopeptidase
Curr Protein Pept Sci 9: 96

Gorrao SS, Hemerly JP, Lima AR, Melo RL, Szeltner Z, Polgar L, Juliano MA, Juliano L (2007)
Fluorescence resonance energy transfer (FRET) peptides and cycloretro-inverso peptides derived from bradykinin as substrates and inhibitors of prolyl oligopeptidase
Peptides 28: 2146

Juhasz T, Szeltner Z, Polgar L (2007)
Truncated prolyl oligopeptidase from Pyrococcus furiosus
Proteins 69: 633

Kiss AL, Hornung B, Radi K, Gengeliczki Z, Sztaray B, Juhasz T, Szeltner Z, Harmat V, Polgar L (2007)
The acylaminoacyl peptidase from Aeropyrum pernix K1 thought to be an exopeptidase displays endopeptidase activity
Journal of Molecular Biology 368: 509

Juhasz T, Szeltner Z, Polgar L (2006)
Properties of the prolyl oligopeptidase homologue from Pyrococcus furiosus
FEBS Letters 580: 3493

Fuxreiter M, Magyar C, Juhasz T, Szeltner Z, Polgar L, Simon I (2005)
Flexibility of prolyl oligopeptidase: molecular dynamics and molecular framework analysis of the potential substrate pathways
Proteins 60: 504

Juhasz T, Szeltner Z, Fulop V, Polgar L (2005)
Unclosed beta-propellers display stable structures: implications for substrate access to the active site of prolyl oligopeptidase
Journal of Molecular Biology 346: 907

Szeltner Z, Alshafee I, Juhasz T, Parvari R, Polgar L (2005)
The PREPL A protein, a new member of the prolyl oligopeptidase family, lacking catalytic activity
Cell Mol Life Sciences 62: 2376

Wright H, Kiss AL, Szeltner Z, Polgar L, Fulop V (2005)
Crystallization and preliminary crystallographic analysis of porcine acylaminoacyl peptidase
Acta Crystallographica Sect F Struct Biol Cryst Commun 61: 942

Szeltner Z, Rea D, Juhasz T, Renner V, Fulop V, Polgar L (2004)
Concerted structural changes in the peptidase and the propeller domains of prolyl oligopeptidase are required for substrate binding
Journal of Molecular Biology 340: 627

Szeltner Z, Rea D, Renner V, Juliano L, Fulop V, Polgar L (2003)
Electrostatic environment at the active site of prolyl oligopeptidase is highly influential during substrate binding
Journal of Biological Chemistry 278: 48786

Polgar L (2002)
The prolyl oligopeptidase family
Cell Mol Life Sciences 59: 349

Szeltner Z, Rea D, Renner V, Fulop V, Polgar L (2002)
Electrostatic effects and binding determinants in the catalysis of prolyl oligopeptidase. Site specific mutagenesis at the oxyanion binding site
Journal of Biological Chemistry 277: 42613

Szeltner Z, Rea D, Juhasz T, Renner V, Mucsi Z, Orosz G, Fulop V, Polgar L (2002)
Substrate-dependent competency of the catalytic triad of prolyl oligopeptidase
Journal of Biological Chemistry 277: 44597

Fulop V, Szeltner Z, Renner V, Polgar L (2001)
Structures of prolyl oligopeptidase substrate/inhibitor complexes. Use of inhibitor binding for titration of the catalytic histidine residue
Journal of Biological Chemistry 276: 1262

Fulop V, Szeltner Z, Polgar L (2000)
Catalysis of serine oligopeptidases is controlled by a gating filter mechanism
EMBO Rep 1: 277

Szeltner Z, Renner V, Polgar L (2000)
The noncatalytic beta-propeller domain of prolyl oligopeptidase enhances the catalytic capability of the peptidase domain
Journal of Biological Chemistry 275: 15000

Fulop V, Bocskei Z, Polgar L (1998)
Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis
Cell 94: 161

Kahyaoglu A, Haghjoo K, Guo F, Jordan F, Kettner C, Felfoldi F, Polgar L (1997)
Low barrier hydrogen bond is absent in the catalytic triads in the ground state but Is present in a transition-state complex in the prolyl oligopeptidase family of serine proteases
Journal of Biological Chemistry 272: 25547

Polgar L (1995)
Effects of ionic strength on the catalysis and stability of prolyl oligopeptidase
Biochemical Journal 312: 267

Polgar L (1994)
Prolyl oligopeptidases
Methods Enzymol 244: 188

Polgar L (1992)
Structural relationship between lipases and peptidases of the prolyl oligopeptidase family
FEBS Letters 311: 281

Rawlings ND, Polgar L, Barrett AJ (1991)
A new family of serine-type peptidases related to prolyl oligopeptidase [letter]
Biochemical Journal 279: 907