Block

Tree Display

AceDB Schema

XML Display

Feedback

Block Report for: L

Avian-virus_vlip, Bacterial_lip_FamI.1, Bacterial_lip_FamI.2, Bacterial_lip_FamI.3, Bacterial_lip_FamI.5, Bacterial_lip_FamI.6, Bacterial_lipase, Canar_LipB, Chlorophyllase, Chlorophyllase_Plant, Hepatic_Lipase, Insect_Phospholipase, Insect_lipase, Lipase_3, Lipoprotein_Lipase, PC-sterol_acyltransferase, Pancreatic_lipase, Phospholipase, Plant_lipase_EDS1-like, Plant_phospholipase, Polyesterase-lipase-cutinase, Triacylglycerol-lipase-OBL1-like, Yolk-Protein_dipter

Top

FamilyAvian-virus_vlip
CommentThis family has been recognized as alpha/beta hydrolase by Kamil et al. Previously associated with Lipoprotein_lipase family but is also close to phospholipase. vLIP may not serve as a traditional lipase enzyme, but the serine nucleophile position is essential in vivo for the viral functions of vLIP. Could be example of repurposing alpha/beta hydrolase fold toward a nonenzymatic role, possibly in lipid bonding
InterproIPR000734 (Lipase)Pdoc
PFamPF00151 (Lipase)PrintsProsite
EC no EC numberTables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: vLIP, a viral lipase homologue, is a virulence factor of Marek's disease virus
    Kamil JP, Tischer BK, Trapp S, Nair VK, Osterrieder N, Kung HJ
    Ref: J Virol, 79:6984, 2005 : PubMed

            

no Image
no Structure
> List of Gene_Locus for Avian-virus_vlip (7)


Top
FamilyBacterial_lip_FamI.1Parent FamilyBacterial_lipase
CommentThis family corresponds to family I.1 of the classification of Arpigny and Jaeger (1999)
InterproPdoc
PFamPrintsProsite
EC no EC numberTables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Molecular Characterization of Transesterification Activity of Novel Lipase Family I.1
    Haryati T, Widhiastuty MP, Warganegara FM, Akhmaloka A
    Ref: Bioscience Reports, :, 2022 : PubMed

            

    Title: Structure, mechanism, and enantioselectivity shifting of lipase LipK107 with a simple way
    Zhang L, Gao B, Yuan Z, He X, Yuan YA, Zhang JZ, Wei D
    Ref: Biochimica & Biophysica Acta, 1844:1183, 2014 : PubMed

            

    Title: Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution.
    Korman TP, Sahachartsiri B, Charbonneau DM, Huang GL, Beauregard M, Bowie JU
    Ref: Biotechnol Biofuels, 6:70, 2013 : PubMed

            

    Title: Crystal Structure of Proteus mirabilis Lipase, a Novel Lipase from the Proteus/Psychrophilic Subfamily of Lipase Family I.1
    Korman TP, Bowie JU
    Ref: PLoS ONE, 7:e52890, 2012 : PubMed

            

    Title: Lipases for biotechnology
    Jaeger KE, Eggert T
    Ref: Curr Opin Biotechnol, 13:390, 2002 : PubMed

            

    Title: Crystal structure of pseudomonas aeruginosa lipase in the open conformation. The prototype for family I.1 of bacterial lipases
    Nardini M, Lang DA, Liebeton K, Jaeger KE, Dijkstra BW
    Ref: Journal of Biological Chemistry, 275:31219, 2000 : PubMed

            

    Title: Bacterial lipolytic enzymes: classification and properties
    Arpigny JL, Jaeger KE
    Ref: Biochemical Journal, 343:177, 1999 : PubMed

            

> Structure scheme for Bacterial_lip_FamI.1
> Structures for Bacterial_lip_FamI.1 (7)
> List of Gene_Locus for Bacterial_lip_FamI.1 (51)


Top
FamilyBacterial_lip_FamI.2Parent FamilyBacterial_lipase
CommentThis family corresponds to family I.2 of the classification of Arpigny and Jaeger (1999)
InterproPdoc
PFamPrintsProsite
EC no EC numberTables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Lipases for biotechnology
    Jaeger KE, Eggert T
    Ref: Curr Opin Biotechnol, 13:390, 2002 : PubMed

            

    Title: Bacterial lipolytic enzymes: classification and properties
    Arpigny JL, Jaeger KE
    Ref: Biochemical Journal, 343:177, 1999 : PubMed

            

> Structure scheme for Bacterial_lip_FamI.2
> Structures for Bacterial_lip_FamI.2 (15)
> List of Gene_Locus for Bacterial_lip_FamI.2 (18)


Top
FamilyBacterial_lip_FamI.3Parent FamilyBacterial_lipase
CommentThis family corresponds to family I.3 of the classification of Arpigny and Jaeger (1999) The N-catalytic domain (residues 1370) contains the active site residues, Ser207, Asp255, and His313 4, 5. The C-domain contains several repeats of the RTX motif and a putative secretion signal near the C-terminus. The Cdomain contains two beta-roll motifs, laterally stacked together forming the so called beta-roll sandwich. The first beta-roll motif consists of residues 373417, containing five RTX repeats and binds three Ca2+ ions. The second beta-roll motif consists of residues 493-568, containing eight RTX repeats and binds five Ca2+ ions. HemolysinCabind (PF00353). This family contains Polyurethanases (PURase)
InterproPdoc
PFamPrintsProsite
EC no EC numberTables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: X-ray crystallographic and MD simulation studies on the mechanism of interfacial activation of a family I.3 lipase with two lids
    Angkawidjaja C, Matsumura H, Koga Y, Takano K, Kanaya S
    Ref: Journal of Molecular Biology, 400:82, 2010 : PubMed

            

    Title: Importance of the Ca2+-binding sites in the N-catalytic domain of a family I.3 lipase for activity and stability
    Kuwahara K, Angkawidjaja C, Matsumura H, Koga Y, Takano K, Kanaya S
    Ref: Protein Engineering Des Sel, 21:737, 2008 : PubMed

            

    Title: Crystal structure of a family I.3 lipase from Pseudomonas sp. MIS38 in a closed conformation
    Angkawidjaja C, You DJ, Matsumura H, Kuwahara K, Koga Y, Takano K, Kanaya S
    Ref: FEBS Letters, 581:5060, 2007 : PubMed

            

    Title: A calcium-gated lid and a large beta-roll sandwich are revealed by the crystal structure of extracellular lipase from Serratia marcescens
    Meier R, Drepper T, Svensson V, Jaeger KE, Baumann U
    Ref: Journal of Biological Chemistry, 282:31477, 2007 : PubMed

            

    Title: Lipases for biotechnology
    Jaeger KE, Eggert T
    Ref: Curr Opin Biotechnol, 13:390, 2002 : PubMed

            

    Title: Bacterial lipolytic enzymes: classification and properties
    Arpigny JL, Jaeger KE
    Ref: Biochemical Journal, 343:177, 1999 : PubMed

            

> Structure scheme for Bacterial_lip_FamI.3
> Structures for Bacterial_lip_FamI.3 (9)
> List of Gene_Locus for Bacterial_lip_FamI.3 (31)


Top
FamilyBacterial_lip_FamI.5Parent FamilyBacterial_lipase
CommentThis family correspond to family I.5 of the classification of Arpigny and Jaeger (1999) and abH15 of the LED database. It includes lipases from gram positive bacteria, organic-solvent tolerant, showing thermoalkalophilic properties and high molecular weight resulting from extra domain where a zinc ion is coordinatively bound to the enzyme. The family also contains poly (butylene adipate-co-terephthalate)-hydrolyzing lipase from Pelosinus fermentans
InterproPdoc
PFamPrintsProsite
EC no EC numberTables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Characterization of a poly(butylene adipate-co-terephthalate)-hydrolyzing lipase from Pelosinus fermentans
    Biundo A, Hromic A, Pavkov-Keller T, Gruber K, Quartinello F, Haernvall K, Perz V, Arrell MS, Zinn M and Guebitz GM <1 more author(s)>
    Ref: Applied Microbiology & Biotechnology, 100:1753, 2016 : PubMed

            

    Title: Improvement of thermal stability via outer-loop ion pair interaction of mutated T1 lipase from Geobacillus zalihae strain T1
    Ruslan R, Rahman RNZRA, Leow ATC, Ali MSM, Basri M, Salleh AB
    Ref: Int J Mol Sci, 13:943, 2012 : PubMed

            

    Title: High level expression and characterization of a novel thermostable, organic solvent tolerant, 1,3-regioselective lipase from Geobacillus sp. strain ARM
    Ebrahimpour A, Rahman RNZRA, Basri M, Salleh AB
    Ref: Bioresour Technol, 102:6972, 2011 : PubMed

            

    Title: Crystallization and preliminary X-ray crystallographic analysis of a thermostable organic solvent-tolerant lipase from Bacillus sp. strain 42
    Khusaini MS, Rahman RNZRA, Ali MSM, Leow ATC, Basri M, Salleh AB
    Ref: Acta Crystallographica Sect F Struct Biol Cryst Commun, 67:401, 2011 : PubMed

            

    Title: Crystallization and preliminary X-ray crystallographic analysis of highly thermostable L2 lipase from the newly isolated Bacillus sp. L2
    Shariff FM, Rahman RNZRA, Ali MSM, Chor AL, Basri M, Salleh AB
    Ref: Acta Crystallographica Sect F Struct Biol Cryst Commun, 66:715, 2010 : PubMed

            

    Title: Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements
    Carrasco-Lopez C, Godoy C, de Las Rivas B, Fernandez-Lorente G, Palomo JM, Guisan JM, Fernandez-Lafuente R, Martinez-Ripoll M, Hermoso JA
    Ref: Journal of Biological Chemistry, 284:4365, 2009 : PubMed

            

    Title: Novel cation-pi interaction revealed by crystal structure of thermoalkalophilic lipase
    Matsumura H, Yamamoto T, Leow ATC, Mori T, Salleh AB, Basri M, Inoue T, Kai Y, Rahman RNZRA
    Ref: Proteins, 70:592, 2008 : PubMed

            

    Title: Lipases for biotechnology
    Jaeger KE, Eggert T
    Ref: Curr Opin Biotechnol, 13:390, 2002 : PubMed

            

    Title: Novel zinc-binding center and a temperature switch in the Bacillus stearothermophilus L1 lipase
    Jeong ST, Kim HK, Kim SJ, Chi SW, Pan JG, Oh TK, Ryu SE
    Ref: Journal of Biological Chemistry, 277:17041, 2002 : PubMed

            

    Title: Crystal Structure of a Thermostable Lipase from Bacillus stearothermophilus P1
    Tyndall JD, Sinchaikul S, Fothergill-Gilmore LA, Taylor P, Walkinshaw MD
    Ref: Journal of Molecular Biology, 323:859, 2002 : PubMed

            

    Title: Bacterial lipolytic enzymes: classification and properties
    Arpigny JL, Jaeger KE
    Ref: Biochemical Journal, 343:177, 1999 : PubMed

            

&gt; Structure scheme for Bacterial_lip_FamI.5
&gt; Structures for Bacterial_lip_FamI.5 (31)
&gt; List of Gene_Locus for Bacterial_lip_FamI.5 (17)


Top
FamilyBacterial_lip_FamI.6Parent FamilyBacterial_lipase
CommentThis family correspond to family I.6 of the classification of Arpigny and Jaeger (1999). These lipases differ from other bacterial lipases. They present high phospholipase A1 activity. The substrate-binding cavity contains two large hydrophobic acyl chain-binding pockets and a shallow and more polar third pocket that is capable of binding either a (short) fatty acid or a phospholipid head-group.
InterproPdoc
PFamPrintsProsite
EC no EC numberTables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Structural basis of phospholipase activity of Staphylococcus hyicus lipase
    Tiesinga JJ, van Pouderoyen G, Nardini M, Ransac S, Dijkstra BW
    Ref: Journal of Molecular Biology, 371:447, 2007 : PubMed

            

    Title: Lipases for biotechnology
    Jaeger KE, Eggert T
    Ref: Curr Opin Biotechnol, 13:390, 2002 : PubMed

            

    Title: Bacterial lipolytic enzymes: classification and properties
    Arpigny JL, Jaeger KE
    Ref: Biochemical Journal, 343:177, 1999 : PubMed

            

&gt; Structure scheme for Bacterial_lip_FamI.6
&gt; Structures for Bacterial_lip_FamI.6 (4)
&gt; List of Gene_Locus for Bacterial_lip_FamI.6 (12)


Top
FamilyBacterial_lipaseChildren FamilyBacterial_lip_FamI.1, Bacterial_lip_FamI.2, Bacterial_lip_FamI.3, Bacterial_lip_FamI.5, Bacterial_lip_FamI.6
CommentThis family correspond to family I.1, I.2, I.3, I.5, I.6, (families I.4 and 1.7 are more related to Lipase_2) of the classification of Arpigny and Jaeger (1999).(also included in IPR000734) Also close to Lipase_2 (2lip). Pseudomonas cepacia lipase is in the same family of scop as 1I6W bacillus subtilis lipase).
InterproIPR000734 (Lipase)Pdoc PDOC00110
PFamPF01764 (Lipase_3)Prints PR00821Prosite PS00120
ECAt KYOTO 3.1.1.3 at NYCEZYME 3.1.1.3Tables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: A cell wall-degrading esterase of Xanthomonas oryzae requires a unique substrate recognition module for pathogenesis on rice
    Aparna G, Chatterjee A, Sonti RV, Sankaranarayanan R
    Ref: Plant Cell, 21:1860, 2009 : PubMed

            

    Title: Structure of the alkalohyperthermophilic Archaeoglobus fulgidus lipase contains a unique C-terminal domain essential for long-chain substrate binding
    Chen CK, Lee GC, Ko TP, Guo RT, Huang LM, Liu HJ, Ho YF, Shaw JF, Wang AH
    Ref: Journal of Molecular Biology, 390:672, 2009 : PubMed

            

    Title: Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling
    Hoover HS, Blankman JL, Niessen S, Cravatt BF
    Ref: Bioorganic & Medicinal Chemistry Lett, 18:5838, 2008 : PubMed

            

    Title: Importance of the Ca2+-binding sites in the N-catalytic domain of a family I.3 lipase for activity and stability
    Kuwahara K, Angkawidjaja C, Matsumura H, Koga Y, Takano K, Kanaya S
    Ref: Protein Engineering Des Sel, 21:737, 2008 : PubMed

            

    Title: Crystal structure of a family I.3 lipase from Pseudomonas sp. MIS38 in a closed conformation
    Angkawidjaja C, You DJ, Matsumura H, Kuwahara K, Koga Y, Takano K, Kanaya S
    Ref: FEBS Letters, 581:5060, 2007 : PubMed

            

    Title: Lipases for biotechnology
    Jaeger KE, Eggert T
    Ref: Curr Opin Biotechnol, 13:390, 2002 : PubMed

            

    Title: Complex of Burkholderia cepacia lipase with transition state analogue of 1-phenoxy-2-acetoxybutane: biocatalytic, structural and modelling study
    Luic M, Tomic S, Lescic I, Ljubovic E, Sepac D, Sunjic V, Vitale L, Saenger W, Kojic-Prodic B
    Ref: European Journal of Biochemistry, 268:3964, 2001 : PubMed

            

    Title: Bacterial lipolytic enzymes: classification and properties
    Arpigny JL, Jaeger KE
    Ref: Biochemical Journal, 343:177, 1999 : PubMed

            

&gt; Structure scheme for Bacterial_lipase
&gt; Structures for Bacterial_lipase (66)
&gt; List of Gene_Locus for Bacterial_lipase (129)


Top
FamilyCanar_LipB
CommentThe lead of this family is Candida antarctica (Trichosporon oryzae) (yeast) Lipase B. It was previously embedded in Lipase_3. The family corresponds to the _abH37 - Candida antarctica lipase like_ family of the LED database. Lipase B from Candida antarctica (CALB) has broad substrate specificity and high enantioselectivity. It can function in aqueous and organic environments and is used for a wide range of applications such as transesterification, and polymerization reactions, asymmetric synthesis PANTHER db family PTHR37574
InterproPdoc
PFamPrintsProsite
EC no EC numberTables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Structural and Experimental Evidence for the Enantiomeric Recognition toward a Bulky sec-Alcohol by Candida antarctica Lipase B
    Park K, Kim S, Park J, Joe S, Min B, Oh J, Song J, Park SY, Park S, Lee H
    Ref: , 6:7458, 2016 : PubMed

            

    Title: Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin
    Gill I, Patel R
    Ref: Bioorganic & Medicinal Chemistry Lett, 16:705, 2006 : PubMed

            

    Title: Understanding structure-stability relationships of Candida antartica lipase B in ionic liquids
    De Diego T, Lozano P, Gmouh S, Vaultier M, Iborra JL
    Ref: Biomacromolecules, 6:1457, 2005 : PubMed

            

    Title: An inverse substrate orientation for the regioselective acylation of 3',5'-diaminonucleosides catalyzed by Candida antarctica lipase B?
    Lavandera I, Fernandez S, Magdalena J, Ferrero M, Kazlauskas RJ, Gotor V
    Ref: Chembiochem, 6:1381, 2005 : PubMed

            

    Title: Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B
    Magnusson AO, Rotticci-Mulder JC, Santagostino A, Hult K
    Ref: Chembiochem, 6:1051, 2005 : PubMed

            

    Title: Improving the catalytic activity of Candida antarctica lipase B by circular permutation
    Qian Z, Lutz S
    Ref: Journal of the American Chemical Society, 127:13466, 2005 : PubMed

            

    Title: Synthesis of flavor and fragrance esters using Candida antarctica lipase
    Larios A, Garcia HS, Oliart RM, Valerio-Alfaro G
    Ref: Applied Microbiology & Biotechnology, 65:373, 2004 : PubMed

            

    Title: Synthesis of novel D-glucuronic acid fatty esters using Candida antarctica lipase in tert-butanol
    Moreau B, Lognay GC, Blecker C, Brohee JC, Chery F, Rollin P, Paquot M, Marlier M
    Ref: Biotechnol Lett, 26:419, 2004 : PubMed

            

    Title: Kinetic resolution of rac-2-pentanol catalyzed by Candida antarctica lipase B in the ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide
    Noel M, Lozano P, Vaultier M, Iborra JL
    Ref: Biotechnol Lett, 26:301, 2004 : PubMed

            

    Title: Regioselective acylation of flavonoids catalyzed by immobilized Candida antarctica lipase under reduced pressure
    Passicos E, Santarelli X, Coulon D
    Ref: Biotechnol Lett, 26:1073, 2004 : PubMed

            

    Title: Stability improvement of immobilized Candida antarctica lipase B in an organic medium under microwave radiation
    Rejasse B, Lamare S, Legoy MD, Besson T
    Ref: Org Biomol Chem, 2:1086, 2004 : PubMed

            

    Title: Regeneration of immobilized Candida antarctica lipase for transesterification
    Chen JW, Wu WT
    Ref: J Biosci Bioeng, 95:466, 2003 : PubMed

            

    Title: Regiospecific analysis by ethanolysis of oil with immobilized Candida antarctica lipase
    Shimada Y, Ogawa J, Watanabe Y, Nagao T, Kawashima A, Kobayashi T, Shimizu S
    Ref: Lipids, 38:1281, 2003 : PubMed

            

    Title: Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution
    Zhang N, Suen WC, Windsor W, Xiao L, Madison V, Zaks A
    Ref: Protein Engineering, 16:599, 2003 : PubMed

            

    Title: Ethyl esterification of docosahexaenoic acid in an organic solvent-free system with immobilized Candida antarctica lipase
    Shimada Y, Watanabe Y, Sugihara A, Baba T, Ooguri T, Moriyama S, Terai T, Tominaga Y
    Ref: J Biosci Bioeng, 92:19, 2001 : PubMed

            

    Title: Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil
    Samukawa T, Kaieda M, Matsumoto T, Ban K, Kondo A, Shimada Y, Noda H, Fukuda H
    Ref: J Biosci Bioeng, 90:180, 2000 : PubMed

            

    Title: Stepwise ethanolysis of tuna oil using immobilized Candida antarctica lipase
    Watanabe Y, Shimada Y, Sugihara A, Tominaga Y
    Ref: J Biosci Bioeng, 88:622, 1999 : PubMed

            

    Title: Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols
    Uppenberg J, Ohrner N, Norin M, Hult K, Kleywegt GJ, Patkar S, Waagen V, Anthonsen T, Jones TA
    Ref: Biochemistry, 34:16838, 1995 : PubMed

            

    Title: Crystallization and preliminary X-ray studies of lipase B from Candida antarctica
    Uppenberg J, Patkar S, Bergfors T, Jones TA
    Ref: Journal of Molecular Biology, 235:790, 1994 : PubMed

            

    Title: The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica
    Uppenberg J, Hansen MT, Patkar S, Jones TA
    Ref: Structure, 2:293, 1994 : PubMed

            

no Image
&gt; Structures for Canar_LipB (27)
&gt; List of Gene_Locus for Canar_LipB (89)


Top
FamilyChlorophyllase
CommentChlorophyllase (Chlase) enzyme involved in chlorophylle (Chl) degradation and catalyses the hydrolysis of ester bond to yield chlorophyllide and phytol. This family correspond to bacterial enzymes close to chlorophyllases of plant Chlorophyllase_Plant. The activity of these enzymes are related to cutinase and Poly-ethylene-therephthalate (PET) hydrolases
InterproIPR017395 (Chlorophyllase)Pdoc
PFamPF07224 (Chlorophyllase)PrintsProsite
ECAt KYOTO 3.1.1.14 at NYCEZYME 3.1.1.14Tables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
no reference
no Image
&gt; Structures for Chlorophyllase (2)
&gt; List of Gene_Locus for Chlorophyllase (856)


Top
FamilyChlorophyllase_Plant
CommentThis family consists of several plant specific Chlorophyllase proteins (EC: 3.1.1.14). Chlorophyllase (Chlase) is the first enzyme involved in chlorophylle (Chl) degradation and catalyses the hydrolysis of ester bond to yield chlorophyllide and phytol The family includes both plant bacteria and Amphioxus members. However Chlorophyllase is not localized to plastids, and double knockout mutant plants still are able to degrade chlorophyll during leaf senescence. So pheophytinase is a new pathway. Chlorophyllase could be more important in fruit rippening. Some bacterial enzyme are close to plant chlorophyllases but are now separated in another family Chlorophyllase. (Few sponge or marine invertebrates protein included). A structure-function analysis of chlorophyllase reveals a mechanism for activity regulation dependent on disulfide bonds(Jo et al.)
InterproIPR017395 (Chlorophyllase)Pdoc
PFamPF07224 (Chlorophyllase)PrintsProsite
ECAt KYOTO 3.1.1.14 at NYCEZYME 3.1.1.14Tables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: A structure-function analysis of chlorophyllase reveals a mechanism for activity regulation dependent on disulfide bonds
    Jo M, Knapp M, Boggs DG, Brimberry M, Donnan PH, Bridwell-Rabb J
    Ref: Journal of Biological Chemistry, :102958, 2023 : PubMed

            

    Title: Chlorophyll degradation during senescence
    Hortensteiner S
    Ref: Annu Rev Plant Biol, 57:55, 2006 : PubMed

            

    Title: Mechanistic analysis of wheat chlorophyllase
    Arkus KA, Cahoon EB, Jez JM
    Ref: Archives of Biochemistry & Biophysics, 438:146, 2005 : PubMed

            

    Title: Chlorophyllase as a serine hydrolase: identification of a putative catalytic triad
    Tsuchiya T, Suzuki T, Yamada T, Shimada H, Masuda T, Ohta H, Takamiya K
    Ref: Plant Cell Physiol, 44:96, 2003 : PubMed

            

    Title: Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate
    Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T, Takamiya K
    Ref: Proc Natl Acad Sci U S A, 96:15362, 1999 : PubMed

            

no Image
&gt; Structures for Chlorophyllase_Plant (1)
&gt; List of Gene_Locus for Chlorophyllase_Plant (174)


Top
FamilyHepatic_Lipase
CommentPancreatic, hepatic and gastric/lingual lipase are closely related to each other and to lipoprotein lipase (EC: 3.1.1.34), which hydrolyses triglycerides of chylomicrons and very low density lipoproteins (VLDL). Familial human hepatic lipase deficiency is a rare recessive disorder Two variants (S267F and T383M) are rare mutations found to date only in HL deficient subjects and their relatives. Of the six HL variants described to date, only S267F and T383M are associated with hyperlipidemia. human-LIPC. The disease is characterised by premature atherosclerosis and abnormal circulating lipoproteins
InterproIPR000734 (Lipase), IPR002333 (Hepatic lipase), IPR016272 (Lipase, LIPH-type)Pdoc PDOC00110
PFamPF00151 (Lipase)Prints PR00821, PR00824Prosite PS00120
ECAt KYOTO 3.1.1.3 at NYCEZYME 3.1.1.3Tables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Vertebrate hepatic lipase genes and proteins: a review supported by bioinformatic studies
    Holmes RS, Vandeberg JL, Cox LA
    Ref: Open Access Bioinformatics, 2011:85, 2011 : PubMed

            

    Title: Human hepatic lipase mutations and polymorphisms
    Hegele RA, Tu L, Connelly PW
    Ref: Hum Mutat, 1:320, 1992 : PubMed

            

no Image
no Structure
&gt; List of Gene_Locus for Hepatic_Lipase (115)


Top
FamilyInsect_Phospholipase
CommentPhospholipase A(1) (PLA(1)) is an enzyme that hydrolyzes phospholipids and produces 2-acyl-lysophospholipids and fatty acids and is conserved in a wide range of organisms. Included in this family are Vespid venom allergen phospholipase A1. Vespid phospholipase A1 (vPLA1) is one of the primary venom components with local inflammatory effects. In addition to causing allergic reactions, vPLA1 can hydrolyze the sn-1 fatty acids in phospholipids and convert them into their corresponding lyso compounds. vPLA1 may disrupt the phospholipid packing of biological membranes, causing severe hemolysis and leading to cardiac dysfunction and death in animals
InterproIPR000734 (Lipase), IPR002334 (Dol/Ves 1 allergen)Pdoc PDOC00110
PFamPF00151 (Lipase)Prints PR00821, PR00825Prosite PS00120
ECAt KYOTO 3.1.1.32 at NYCEZYME 3.1.1.32Tables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Crystal structure of vespid phospholipase A1 reveals insights into the mechanism for cause of membrane dysfunction
    Hou MH, Chuang CY, Ko TP, Hu NJ, Chou CC, Shih YP, Ho CL, Wang AH
    Ref: Insect Biochemistry & Molecular Biology, 68:79, 2016 : PubMed

            

no Image
&gt; Structures for Insect_Phospholipase (1)
&gt; List of Gene_Locus for Insect_Phospholipase (17)


Top
FamilyInsect_lipase
CommentThis family groups insect lipases close to mammalian pancreatic, hepatic and gastric/lingual lipase which are closely related to each other and to lipoprotein lipase (EC: 3.1.1.34), which hydrolyses triglycerides of chylomicrons and very low density lipoproteins (VLDL). These are neutral lipases distinct from Acidic lipases and higher dipteran yolk proteins
InterproIPR000734 (Lipase)Pdoc
PFamPF00151 (Lipase)Prints PR00821Prosite PS00120
EC no EC numberTables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Comparative and functional genomics of lipases in holometabolous insects
    Horne I, Haritos VS, Oakeshott JG
    Ref: Insect Biochemistry & Molecular Biology, 39:547, 2009 : PubMed

            

    Title: Multiple tandem gene duplications in a neutral lipase gene cluster in Drosophila
    Horne I, Haritos VS
    Ref: Gene, 411:27, 2008 : PubMed

            

no Image
no Structure
&gt; List of Gene_Locus for Insect_lipase (83)


Top
FamilyLipase_3
CommentTriglyceride lipases are lipases that hydrolyse ester linkages of triglycerides. These lipases are widely distributed in animals, plants and prokaryotes. This family was also called class 3 lipases as they are only distantly related to other lipase families. In some fungi DDHD domain Pfam PF02862 180 residues long containing four conserved residues that may form a metal binding site is associated with the Lipase_3. Bacterial enzymes (LipG Lee et al. 2006) belong to family XI of the classification of Arpigny and Jaeger 1999. The (phospho)lipase of F.solani has the highest microbial activity on galactolipids Jallouli et al. Feruloyl esterases are enzymes produced by micro-organisms to deconstruct plant cell walls by hydrolyzing phenolic groups involved in the cross-linking of arabinoxylan to other polymeric structures. The non-modular type-A feruloyl esterase from Aspergillus niger AnFaeA is similar to fungal lipases and different from other feruloyl esterases. Feruloyl esterases are distributed in different sub-classes type-A B C,D and E and fall respectively in the following families. Type-A in Lipase_3, Type-B in Esterase_phb (PHB depolymerase), Type-C in Tannase, Type-D in FaeC, Type-E in A85-Feruloyl-Esterase, Type-F in BD-FAE
InterproIPR000734 (Lipase), IPR002921 (Fungal_lipase-like domain), IPR005592 (Mono-/di-acylglycerol lipase, N-terminal Mono/diacylglycerol_lipase_N)Pdoc PDOC00110
PFamPF03893 (Lipase3_N), PF01764 (Lipase_3)Prints PR00821Prosite PS00120
ECAt KYOTO 3.1.1.3 at NYCEZYME 3.1.1.3Tables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Diacylglycerol Lipase-beta Knockout Mice Display a Sex-Dependent Attenuation of Traumatic Brain Injury-Induced Mortality with No Impact on Memory or Other Functional Consequences
    O'Brien LD, Smith TL, Donvito G, Cravatt BF, Newton J, Spiegel S, Reeves TM, Phillips LL, Lichtman AH
    Ref: Cannabis Cannabinoid Res, :, 2021 : PubMed

            

    Title: A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography
    de Wijn R, Hennig O, Roche J, Engilberge S, Rollet K, Fernandez-Millan P, Brillet K, Betat H, Morl M and Sauter C <7 more author(s)>
    Ref: IUCrJ, 6:454, 2019 : PubMed

            

    Title: Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition
    Ogasawara D, Deng H, Viader A, Baggelaar MP, Breman A, den Dulk H, van den Nieuwendijk AM, Soethoudt M, van der Wel T and van der Stelt M <10 more author(s)>
    Ref: Proc Natl Acad Sci U S A, 113:26, 2016 : PubMed

            

    Title: The galactolipase activity of Fusarium solani (phospho)lipase
    Jallouli R, Othman H, Amara S, Parsiegla G, Carriere F, Srairi-Abid N, Gargouri Y, Bezzine S
    Ref: Biochimica & Biophysica Acta, 1851:282, 2015 : PubMed

            

    Title: Crystal structure of a secreted lipase from Gibberella zeae reveals a novel double-lock mechanism
    Lou Z, Li M, Sun Y, Liu Y, Liu Z, Wu W, Rao Z
    Ref: Protein Cell, 1:760, 2010 : PubMed

            

    Title: Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation
    Qian Z, Horton JR, Cheng X, Lutz S
    Ref: Journal of Molecular Biology, 393:191, 2009 : PubMed

            

    Title: Structural basis for the cold adaptation of psychrophilic M37 lipase from Photobacterium lipolyticum
    Jung SK, Jeong DG, Lee MS, Lee JK, Kim HK, Ryu SE, Park BC, Kim JH, Kim SJ
    Ref: Proteins, 71:476, 2008 : PubMed

            

    Title: Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases
    Lee MH, Lee CH, Oh TK, Song JK, Yoon JH
    Ref: Applied Environmental Microbiology, 72:7406, 2006 : PubMed

            

    Title: Feruloyl esterase: a key enzyme in biomass degradation
    Wong DWS
    Ref: Appl Biochem Biotechnol, 133:87, 2006 : PubMed

            

    Title: The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family
    Hermoso JA, Sanz-Aparicio J, Molina R, Juge N, Gonzalez R, Faulds CB
    Ref: Journal of Molecular Biology, 338:495, 2004 : PubMed

            

    Title: Structure of a feruloyl esterase from Aspergillus niger
    McAuley KE, Svendsen A, Patkar SA, Wilson KS
    Ref: Acta Crystallographica D Biol Crystallogr, 60:878, 2004 : PubMed

            

    Title: The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides
    de Vries RP, Michelsen B, Poulsen CH, Kroon PA, van den Heuvel RH, Faulds CB, Williamson G, van den Hombergh JP, Visser J
    Ref: Applied Environmental Microbiology, 63:4638, 1997 : PubMed

            

    Title: Current progress in crystallographic studies of new lipases from filamentous fungi
    Derewenda U, Swenson L, Green R, Wei Y, Yamaguchi S, Joerger R, Haas MJ, Derewenda ZS
    Ref: Protein Engineering, 7:551, 1994 : PubMed

            

    Title: An unusual buried polar cluster in a family of fungal lipases
    Derewenda U, Swenson L, Green R, Wei Y, Dodson GG, Yamaguchi S, Haas MJ, Derewenda ZS
    Ref: Nat Struct Biol, 1:36, 1994 : PubMed

            

    Title: Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar
    Derewenda U, Swenson L, Wei Y, Green R, Kobos PM, Joerger R, Haas MJ, Derewenda ZS
    Ref: J Lipid Res, 35:524, 1994 : PubMed

            

    Title: The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica
    Uppenberg J, Hansen MT, Patkar S, Jones TA
    Ref: Structure, 2:293, 1994 : PubMed

            

    Title: A serine protease triad forms the catalytic centre of a triacylglycerol lipase
    Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G, Tolley S, Turkenburg JP, Christiansen L, Huge-Jensen B and Menge U <2 more author(s)>
    Ref: Nature, 343:767, 1990 : PubMed

            

&gt; Structure scheme for Lipase_3
&gt; Structures for Lipase_3 (61)
&gt; List of Gene_Locus for Lipase_3 (438)


Top
FamilyLipoprotein_Lipase
CommentLipoprotein lipase (LPL) is a key enzyme of lipid metabolism that hydrolyses triglycerides, providing free fatty acids for cells and affecting the maturation of circulating lipoproteins. The enzyme is thought to play a role in the development of obesity and atherosclerosis. Defects in LPL are a cause of familial chylomicronemia syndrome (or type I hyperlipoproteinemia) and also of a form of deficiency characterised by hypertriglyceridemia. Familial chylomicronemia is a recessive disorder usually manifesting in childhood. On a normal diet, patients often present with abdominal pain, hepatosplenomegaly, lipemia retinalis, eruptive xanthomata, and massive hypertriglyceridemia, sometimes complicated with acute pancreatitis. Endothelial lipase (encoded by the LIPG gene) regulates the circulating level of high density lipoprotein cholesterol (HDL-C). It can also form a molecular bridge between endothelial cells and lipoproteins or circulating macrophages through interaction with heparan sulfate proteoglycans. This nonenzymatic action can increase cellular lipoprotein uptake and monocyte adhesion and contribute to atherosclerosis. LPL is a secreted glycoprotein that contains five disulfide bonds and requires an endoplasmic reticulum (ER) protein, lipase maturation factor 1 (LMF1), to successfully fold and traffic out of the ER to the Golgi. LPL is sorted into vesicles in an inactive state: helical LPL oligomer. LPL secretion is mediated by Syndecan-1 (SDC1), a heparan sulfate proteoglycan (HSPG). Stored LPL can be secreted into the interstitial space, where it interacts with HSPGs that bind to the multiple heparin binding sites on each LPL molecule . LPL is next bound by glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) and transported into the capillary, where it acts on chylomicrons and very-low-density lipoproteins (VLDLs) to hydrolyze packaged triglycerides and release FFAs. The angiopoietin-like (ANGPTL) family of proteins inhibit LPL in different tissues. Leth-Espensen et al. publish that the intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding.
InterproIPR000734 (Lipase), IPR002330 (Lipoprotein lipase), IPR016272 (Lipase, LIPH-type)Pdoc PDOC00110
PFamPF00151 (Lipase)Prints PR00821, PR00822Prosite PS00120
ECAt KYOTO 3.1.1.34 at NYCEZYME 3.1.1.34Tables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding
    Leth-Espensen KZ, Kristensen KK, Kumari A, Winther AL, Young SG, Jorgensen TJD, Ploug M
    Ref: Proc Natl Acad Sci U S A, 118:, 2021 : PubMed

            

    Title: Lipoprotein Lipase and Its Regulators: An Unfolding Story
    Wu SA, Kersten S, Qi L
    Ref: Trends Endocrinol Metab, 32:48, 2021 : PubMed

            

    Title: The structure of helical lipoprotein lipase reveals an unexpected twist in lipase storage
    Gunn KH, Roberts BS, Wang F, Strauss JD, Borgnia MJ, Egelman EH, Neher SB
    Ref: Proc Natl Acad Sci U S A, :, 2020 : PubMed

            

    Title: Structure of lipoprotein lipase in complex with GPIHBP1
    Arora R, Nimonkar AV, Baird D, Wang C, Chiu CH, Horton PA, Hanrahan S, Cubbon R, Weldon S and Trauger JW <13 more author(s)>
    Ref: Proc Natl Acad Sci U S A, 116:10360, 2019 : PubMed

            

    Title: Structure of the lipoprotein lipase-GPIHBP1 complex that mediates plasma triglyceride hydrolysis
    Birrane G, Beigneux AP, Dwyer B, Strack-Logue B, Kristensen KK, Francone OL, Fong LG, Mertens HDT, Pan CQ and Meiyappan M <2 more author(s)>
    Ref: Proc Natl Acad Sci U S A, 116:1723, 2019 : PubMed

            

    Title: GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism
    Young SG, Fong LG, Beigneux AP, Allan CM, He C, Jiang H, Nakajima K, Meiyappan M, Birrane G, Ploug M
    Ref: Cell Metab, 30:51, 2019 : PubMed

            

    Title: A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase
    Kristensen KK, Midtgaard SR, Mysling S, Kovrov O, Hansen LB, Skar-Gislinge N, Beigneux AP, Kragelund BB, Olivecrona G and Ploug M <3 more author(s)>
    Ref: Proc Natl Acad Sci U S A, 115:E6020, 2018 : PubMed

            

    Title: Assessing mechanisms of GPIHBP1 and lipoprotein lipase movement across endothelial cells
    Davies BS, Goulbourne CN, Barnes RH, 2nd, Turlo KA, Gin P, Vaughan S, Vaux DJ, Bensadoun A, Beigneux AP and Young SG <1 more author(s)>
    Ref: J Lipid Res, 53:2690, 2012 : PubMed

            

    Title: Mutations in lipoprotein lipase that block binding to the endothelial cell transporter GPIHBP1
    Voss CV, Davies BS, Tat S, Gin P, Fong LG, Pelletier C, Mottler CD, Bensadoun A, Beigneux AP, Young SG
    Ref: Proc Natl Acad Sci U S A, 108:7980, 2011 : PubMed

            

    Title: GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries
    Davies BS, Beigneux AP, Barnes RH, 2nd, Tu Y, Gin P, Weinstein MM, Nobumori C, Nyren R, Goldberg I and Fong LG <3 more author(s)>
    Ref: Cell Metab, 12:42, 2010 : PubMed

            

    Title: Association of lipoprotein lipase D9N polymorphism with myocardial infarction in type 2 diabetes: the genetics, outcomes, and lipids in type 2 diabetes (GOLD) study
    Izar MC, Helfenstein T, Ihara SS, Relvas WG, Santos AO, Fischer SC, Pinto LE, Lopes IE, Pomaro DR and Fonseca FA <32 more author(s)>
    Ref: Atherosclerosis, 204:165, 2009 : PubMed

            

    Title: Cloning of a unique lipase from endothelial cells extends the lipase gene family.
    Hirata K, Dichek HL, Cioffi JA, Choi SY, Leeper NJ, Quintana L, Kronmal GS, Cooper AD, Quertermous T
    Ref: Journal of Biological Chemistry, 274:14170, 1999 : PubMed

            

    Title: A novel endothelial-derived lipase that modulates HDL metabolism
    Jaye M, Lynch KJ, Krawiec J, Marchadier D, Maugeais C, Doan K, South V, Amin D, Perrone M, Rader DJ
    Ref: Nat Genet, 21:424, 1999 : PubMed

            

    Title: Lipoprotein lipase. Molecular model based on the pancreatic lipase x-ray structure: consequences for heparin binding and catalysis
    van Tilbeurgh H, Roussel A, Lalouel JM, Cambillau C
    Ref: Journal of Biological Chemistry, 269:4626, 1994 : PubMed

            

    Title: A missense mutation at codon 188 of the human lipoprotein lipase gene is a frequent cause of lipoprotein lipase deficiency in persons of different ancestries
    Monsalve MV, Henderson H, Roederer G, Julien P, Deeb S, Kastelein JJ, Peritz L, Devlin R, Bruin T and et al. <1 more author(s)>
    Ref: J Clinical Investigation, 86:728, 1990 : PubMed

            

    Title: Human lipoprotein lipase complementary DNA sequence
    Wion KL, Kirchgessner TG, Lusis AJ, Schotz MC, Lawn RM
    Ref: Science, 235:1638, 1987 : PubMed

            

no Image
&gt; Structures for Lipoprotein_Lipase (5)
&gt; List of Gene_Locus for Lipoprotein_Lipase (318)


Top
FamilyPC-sterol_acyltransferase
CommentLysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT), Lecithin-cholesterol acyltransferase, belong to this family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. LACT also known as phosphatidylcholine-sterol acyltransferase (EC), is involved in extracellular metabolism of plasma lipoproteins, including cholesterol. It esterifies the free cholesterol transported in plasma lipoproteins, and is activated by apolipoprotein A-I. Defects in LACT cause Norum and Fish eye diseases. This family correspond to group XV phospholipase A2. For bacterial enzymes this family correspond to family XIV of the upgraded classification of Arpigny and Jaeger (1999)
InterproIPR003386 (Lecithin:cholesterol/phospholipid:diacylglycerol acyltransferase LACT/PDAT_acylTrfase)Pdoc PDOC00110
PFamPF02450 (LACT-Lecithin:cholesterol acyltransferase LCAT)Prints PR00821Prosite PS00120
ECAt KYOTO 2.3.1.43 at NYCEZYME 2.3.1.43Tables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Molecular basis for activation of lecithin:cholesterol acyltransferase by a compound that increases HDL cholesterol
    Manthei KA, Yang SM, Baljinnyam B, Chang L, Glukhova A, Yuan W, Freeman LA, Maloney DJ, Schwendeman A and Tesmer JJ <2 more author(s)>
    Ref: Elife, 7:, 2018 : PubMed

            

    Title: A thermostable esterase from Thermoanaerobacter tengcongensis opening up a new family of bacterial lipolytic enzymes
    Rao L, Xue Y, Zhou C, Tao J, Li G, Lu JR, Ma Y
    Ref: Biochimica & Biophysica Acta, 1814:1695, 2011 : PubMed

            

    Title: Schizosaccharomyces pombe cells deficient in triacylglycerols synthesis undergo apoptosis upon entry into the stationary phase.
    Zhang Q, Chieu HK, Low CP, Zhang S, Heng CK, Yang H
    Ref: Journal of Biological Chemistry, 278:47145", 2003 : PubMed

            

    Title: Deficiency of lecithin:cholesterol acyltransferase due to compound heterozygosity of two novel mutations (Gly33Arg and 30 bp ins) in the LCAT gene
    Wiebusch H, Cullen P, Owen JS, Collins D, Sharp PS, Funke H, Assmann G
    Ref: Hum Mol Genet, 4:143, 1995 : PubMed

            

    Title: Genetic and phenotypic heterogeneity in familial lecithin: cholesterol acyltransferase (LCAT) deficiency. Six newly identified defective alleles further contribute to the structural heterogeneity in this disease
    Funke H, von Eckardstein A, Pritchard PH, Hornby AE, Wiebusch H, Motti C, Hayden MR, Dachet C, Jacotot B and Assmann G <6 more author(s)>
    Ref: J Clinical Investigation, 91:677, 1993 : PubMed

            

    Title: Lecithin cholesterol acyl transferase deficiency: molecular analysis of a mutated allele
    Taramelli R, Pontoglio M, Candiani G, Ottolenghi S, Dieplinger H, Catapano A, Albers J, Vergani C, McLean J
    Ref: Hum Genet, 85:195, 1990 : PubMed

            

    Title: Inhibitory effect of normal high density lipoproteins on lecithin:cholesterol acyltransferase activity in fish eye disease plasma
    Holmquist L, Carlson LA
    Ref: Acta Med Scand, 222:15, 1987 : PubMed

            

    Title: Alpha-lecithin:cholesterol acyltransferase deficiency. Lack of both phospholipase A2 and acyltransferase activities characteristic of high density lipoprotein lecithin:cholesterol acyltransferase in fish eye disease
    Holmquist L, Carlson LA
    Ref: Acta Med Scand, 222:23, 1987 : PubMed

            

no Image
&gt; Structures for PC-sterol_acyltransferase (14)
&gt; List of Gene_Locus for PC-sterol_acyltransferase (96)


Top
FamilyPancreatic_lipase
CommentPancreatic, hepatic and gastric/lingual lipase are closely related to each other and to lipoprotein lipase (EC: 3.1.1.34), which hydrolyses triglycerides of chylomicrons and very low density lipoproteins (VLDL). Pancreatic lipase (triacylglycerol acylhydrolase, EC: 3.1.1.3) plays a key role in dietary fat absorption by hydrolysing dietary long chain triacyl-glycerol to free fatty acids and monoacylglycerols in the intestinal lumen. The activity of lipase is stimulated by colipase in the presence of bile acids. Congenital pancreatic lipase deficiency is a rare, monoenzymatic form of exocrine pancreatic failure. Patients have oily/greasy stools from infancy or early childhood and the absence of discernable pancreatic disease. The pancreatic lipase-related protein show no significant catalytic activity on any of the substrates tested di and tri-glycerides phospholipids. Introducing the double mutation Val 178 Ala and Ala 180 Pro into the human pancreatic RP1 HPLRP1 gene yielded an enzyme is kinetically active on triglycerides. The guinea pig pancreatic lipase-related protein 2 (GPLRP2) differs from classical pancreatic lipases in that it displays both lipase and phospholipase A1 activities; classical pancreatic lipases have no phospholipase activity. human-PNLIPRP2 adopt in solution an open lid conformation which creates a large cavity capable of accommodating the galactose polar head of galactolipids (galactolipase)
InterproIPR000734 (Lipase), IPR002331 (Pancreatic lipase), IPR016272 (Lipase, LIPH-type)Pdoc PDOC00110
PFamPF00151 (Lipase)Prints PR00821, PR00823Prosite PS00120
ECAt KYOTO 3.1.1.3 at NYCEZYME 3.1.1.3Tables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Comparative Study of the Molecular Characterization, Evolution, and Structure Modeling of Digestive Lipase Genes Reveals the Different Evolutionary Selection Between Mammals and Fishes
    Tang SL, Liang XF, He S, Li L, Alam MS, Wu J
    Ref: Front Genet, 13:909091, 2022 : PubMed

            

    Title: Pancreatic lipase inhibitors: The road voyaged and successes
    Kumar A, Chauhan S
    Ref: Life Sciences, :119115, 2021 : PubMed

            

    Title: Structure and Function of Pancreatic Lipase-Related Protein 2 and Its Relationship With Pathological States
    Zhu G, Fang Q, Zhu F, Huang D, Yang C
    Ref: Front Genet, 12:693538, 2021 : PubMed

            

    Title: The beta5-Loop and Lid Domain Contribute to the Substrate Specificity of Pancreatic Lipase-related Protein 2 (PNLIPRP2)
    Xiao X, Lowe ME
    Ref: Journal of Biological Chemistry, 290:28847, 2015 : PubMed

            

    Title: Inhibition of phospholipase A1, lipase and galactolipase activities of pancreatic lipase-related protein 2 by methyl arachidonyl fluorophosphonate (MAFP)
    Amara S, Delorme V, Record M, Carriere F
    Ref: Biochimica & Biophysica Acta, 1821:1379, 2012 : PubMed

            

    Title: Structure of human pancreatic lipase-related protein 2 with the lid in an open conformation
    Eydoux C, Spinelli S, Davis TL, Walker JR, Seitova A, Dhe-Paganon S, de Caro A, Cambillau C, Carriere F
    Ref: Biochemistry, 47:9553, 2008 : PubMed

            

    Title: Human pancreatic lipase-related protein 2 is a galactolipase
    Sias B, Ferrato F, Grandval P, Lafont D, Boullanger P, de Caro A, Leboeuf B, Verger R, Carriere F
    Ref: Biochemistry, 43:10138, 2004 : PubMed

            

    Title: Reactivation of the totally inactive pancreatic lipase RP1 by structure-predicted point mutations
    Roussel A, De Caro J, Bezzine S, Gastinel L, de Caro A, Carriere F, Leydier S, Verger R, Cambillau C
    Ref: Proteins, 32:523, 1998 : PubMed

            

    Title: A pancreatic lipase with a phospholipase A1 activity: crystal structure of a chimeric pancreatic lipase-related protein 2 from guinea pig
    Withers-Martinez C, Carriere F, Verger R, Bourgeois D, Cambillau C
    Ref: Structure, 4:1363, 1996 : PubMed

            

    Title: Two novel human pancreatic lipase related proteins, hPLRP1 and hPLRP2. Differences in colipase dependence and in lipase activity
    Giller T, Buchwald P, Blum-Kaelin D, Hunziker W
    Ref: Journal of Biological Chemistry, 267:16509, 1992 : PubMed

            

    Title: Minireview on pancreatic lipase and colipase
    Chapus C, Rovery M, Sarda L, Verger R
    Ref: Biochimie, 70:1223, 1988 : PubMed

            

    Title: Congenital pancreatic lipase deficiency
    Figarella C, de Caro A, Leupold D, Poley JR
    Ref: J Pediatr, 96:412, 1980 : PubMed

            

    Title: [Congenital absence of pancreatic lipase]
    Rey J, Frezal J, Royer P, Lamy M
    Ref: Arch Fr Pediatr, 23:5, 1966 : PubMed

            

    Title: CONGENITAL PANCREATIC LIPASE DEFICIENCY
    Sheldon W
    Ref: Arch Dis Child, 39:268, 1964 : PubMed

            

no Image
&gt; Structures for Pancreatic_lipase (12)
&gt; List of Gene_Locus for Pancreatic_lipase (488)


Top
FamilyPhospholipase
CommentPhospholipase A(1) (PLA(1)) is an enzyme that hydrolyzes phospholipids and produces 2-acyl-lysophospholipids and fatty acids and is conserved in a wide range of organisms. Hypotrichosis, or woolly hair with or without hypotrichosis hypotrichosis (deficiency of hair growth), can be caused by homozygous or compound heterozygous mutation in the LIPH (human-LIPH) gene on chromosome 3q27 (not hepatic lipase: human-LIPC). Other mammalian enzymes that exhibit PLA(1) activity in vitro are hepatic lipase HL endothelial lipase EL and pancreatic lipase-related protein 2 PLRP2 and belong to alpha/beta hydrolase superfamily.
InterproIPR000734 (Lipase), IPR002334 (Dol/Ves 1 allergen), IPR016272 (Lipase, LIPH-type)Pdoc PDOC00110
PFamPF00151 (Lipase)Prints PR00821, PR00825Prosite PS00120
ECAt KYOTO 3.1.1.32 at NYCEZYME 3.1.1.32Tables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: The Lysophosphatidylserines-An Emerging Class of Signalling Lysophospholipids
    Shanbhag K, Mhetre A, Khandelwal N, Kamat SS
    Ref: J Membr Biol, 253:381, 2020 : PubMed

            

    Title: Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family
    Aoki J, Inoue A, Makide K, Saiki N, Arai H
    Ref: Biochimie, 89:197, 2007 : PubMed

            

    Title: An alternative splicing form of phosphatidylserine-specific phospholipase A1 that exhibits lysophosphatidylserine-specific lysophospholipase activity in humans
    Nagai Y, Aoki J, Sato T, Amano K, Matsuda Y, Arai H and
    Ref: Journal of Biological Chemistry, 274:11053, 1999 : PubMed

            

no Image
no Structure
&gt; List of Gene_Locus for Phospholipase (277)


Top
FamilyPlant_lipase_EDS1-like
CommentEnhanced Disease Susceptibility 1 (EDS1), an essential component of R gene-mediated disease resistance. The Arabidopsis EDS1 (arath-eds1) and PAD4 (arath-F22O6.190) genes encode lipase-like proteins that function in resistance (R) gene-mediated and basal plant disease resistance. EDS1 can dimerize and interact with PAD4. EDS1 (arath-eds1) and PAD4 (arath-F22O6.190) genes encode lipase-like proteins that function in resistance (R) gene-mediated and basal plant disease resistance. EDS1 can dimerize and interact with PAD4 or with SAG101 (arath-At5g14930). This family is extracted from the Lipase3 gene family. The C-terminal domain known as the EP domain and its interface consists of hydrophobic interactions, salt bridges, and an extensive hydrogen bonding network. Plants utilise intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors to detect pathogen effectors and activate local and systemic defence. NRG1 and ADR1 'helper' NLRs (RNLs) cooperate with enhanced disease susceptibility 1 (EDS1), senescence-associated gene 101 (SAG101) and phytoalexin-deficient 4 (PAD4) lipase-like proteins to mediate signalling from TIR domain NLR receptors (TNLs). Two distinct modules (NRG1/EDS1/SAG101 and ADR1/EDS1/PAD4) mediate TNL receptor defence signalling. (In the seed alignment and the HMM alignement the EP domain (not alpha/beta hydrolase domain) is excluded)
InterproIPR000734 (Lipase), IPR044214 (EDS1-like), IPR041266 (EDS1, EP domain EDS1_EP)Pdoc PDOC00110
PFamPF01764 (Lipase_3), PF18117 (EDS1_EP)Prints PR00821Prosite PS00120
EC no EC numberTables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Cavity surface residues of PAD4 and SAG101 contribute to EDS1 dimer signaling specificity in plant immunity
    Dongus JA, Bhandari DD, Penner E, Lapin D, Stolze SC, Harzen A, Patel M, Archer L, Dijkgraaf L and Parker JE <2 more author(s)>
    Ref: Plant J, :, 2022 : PubMed

            

    Title: Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity
    Sun X, Lapin D, Feehan JM, Stolze SC, Kramer K, Dongus JA, Rzemieniewski J, Blanvillain-Baufume S, Harzen A and Parker JE <6 more author(s)>
    Ref: Nat Commun, 12:3335, 2021 : PubMed

            

    Title: Origins and Immunity Networking Functions of EDS1 Family Proteins
    Lapin D, Bhandari DD, Parker JE
    Ref: Annu Rev Phytopathol, :, 2020 : PubMed

            

    Title: A Coevolved EDS1-SAG101-NRG1 Module Mediates Cell Death Signaling by TIR-Domain Immune Receptors
    Lapin D, Kovacova V, Sun X, Dongus JA, Bhandari D, von Born P, Bautor J, Guarneri N, Rzemieniewski J and Parker JE <2 more author(s)>
    Ref: Plant Cell, 31:2430, 2019 : PubMed

            

    Title: Comparative genomic analysis of the Lipase3 gene family in five plant species reveals distinct evolutionary origins
    Wang D, Zhang L, Hu J, Gao D, Liu X, Sha Y
    Ref: Genetica, 146:179, 2018 : PubMed

            

    Title: EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora
    Moreau M, Degrave A, Vedel R, Bitton F, Patrit O, Renou JP, Barny MA, Fagard M
    Ref: Mol Plant Microbe Interact, 25:421, 2012 : PubMed

            

    Title: Crystallization and preliminary crystallographic analysis of Arabidopsis thaliana EDS1, a key component of plant immunity, in complex with its signalling partner SAG101
    Wagner S, Rietz S, Parker JE, Niefind K
    Ref: Acta Crystallographica Sect F Struct Biol Cryst Commun, 67:245, 2011 : PubMed

            

    Title: A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant
    Gao F, Shu X, Ali MB, Howard S, Li N, Winterhagen P, Qiu W, Gassmann W
    Ref: Planta, 231:1037, 2010 : PubMed

            

    Title: Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response
    Garcia AV, Blanvillain-Baufume S, Huibers RP, Wiermer M, Li G, Gobbato E, Rietz S, Parker JE
    Ref: PLoS Pathog, 6:e1000970, 2010 : PubMed

            

    Title: Plant immunity: the EDS1 regulatory node
    Wiermer M, Feys BJ, Parker JE
    Ref: Curr Opin Plant Biol, 8:383, 2005 : PubMed

            

    Title: EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases
    Falk A, Feys BJ, Frost LN, Jones JDG, Daniels MJ, Parker JE
    Ref: Proceedings of the National Academy of Sciences of the United States of America, 96:3292, 1999 : PubMed

            

no Image
&gt; Structures for Plant_lipase_EDS1-like (8)
&gt; List of Gene_Locus for Plant_lipase_EDS1-like (167)


Top
FamilyPlant_phospholipase
CommentFamily close to Lipase_3. The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. AtDSEL, an Arabidopsis cytosolic DAD1-like acylhydrolase, is involved in negative regulation of storage oil mobilization during seedling establishment. This family is close to Plant_lipase_EDS1-like and belongs to Lipase_3 family
InterproIPR000734 (Lipase), IPR033556 (Phospholipase A1-II PLA)Pdoc PDOC00110
PFamPF01764 (Lipase_3)Prints PR00821Prosite PS00120
EC no EC numberTables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Crystal Structures of the Plant Phospholipase A1 Proteins Reveal a Unique Dimerization Domain
    Heo Y, Lee I, Moon S, Yun JH, Kim EY, Park SY, Park JH, Kim WT, Lee W
    Ref: Molecules, 27:, 2022 : PubMed

            

    Title: Comparative genomic analysis of the Lipase3 gene family in five plant species reveals distinct evolutionary origins
    Wang D, Zhang L, Hu J, Gao D, Liu X, Sha Y
    Ref: Genetica, 146:179, 2018 : PubMed

            

    Title: AtDSEL, an Arabidopsis cytosolic DAD1-like acylhydrolase, is involved in negative regulation of storage oil mobilization during seedling establishment
    Kim EY, Seo YS, Kim WT
    Ref: J Plant Physiol, 168:1705, 2011 : PubMed

            

    Title: Phospholipid-derived signaling mediated by phospholipase A in plants
    Ryu SB
    Ref: Trends Plant Sci, 9:229, 2004 : PubMed

            

    Title: The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis
    Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K
    Ref: Plant Cell, 13:2191, 2001 : PubMed

            

no Image
&gt; Structures for Plant_phospholipase (3)
&gt; List of Gene_Locus for Plant_phospholipase (37)


Top
FamilyPolyesterase-lipase-cutinase
CommentThis family differs substantially from the cutinase acetyl-xylan esterase family (cutinase monofunctional). Several cutinases from the genus Thermobifida act on biodegradable plastics such as synthetic polyesters. Not all cutinases can degrade polyester plastics. Aerial plant organs are protected by a cuticle composed of an insoluble polymeric structural compound, cutin, which is a polyester composed of hydroxy and hydroxyepoxy fatty acids. Cutinases are lipases with a specificity for p-nitrophenyl acyl esters with short chain acyl group. This family was extracted from the Bacterial_lipase family which is close to PAF-Acetylhydrolase family. Streptomyces exfoliatus lipase (1JFR) Pseudomonas mendocina lipase (2FX5) are included in this family. This family correspond to family III of the classification of Arpigny et al 1999. Polyethylene terephthalate degrading hydrolase/PET-hydrolase/PET Hydrolase. Two enzymes in Ideonella sakaiensis (for example) act on PET (Poly ethylene terephthalate): idesa-peth from Polyesterase-lipase-cutinase family and idesa-mheth which acts on extremity of PET (Exo-PETase Function PET hydrolase PET-Hydrolase) and on MHET the product of hydrolysis of PET. MHETase belongs to the Tannase family
InterproIPR041127 (Chlorophyllase enzyme)Pdoc
PFamPF12695 (Abhydrolase_5), PF12740 (Chlorophyllase2)PrintsProsite
ECAt KYOTO 3.1.1.74 at NYCEZYME 3.1.1.74Tables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Plastics degradation by hydrolytic enzymes: The plastics-active enzymes database-PAZy
    Buchholz PCF, Feuerriegel G, Zhang H, Perez-Garcia P, Nover LL, Chow J, Streit WR, Pleiss J
    Ref: Proteins, 90:1443, 2022 : PubMed

            

    Title: Discovery and Genetic Code Expansion of a Polyethylene Terephthalate (PET) Hydrolase from the Human Saliva Metagenome for the Degradation and Bio-Functionalization of PET
    Eiamthong B, Meesawat P, Wongsatit T, Jitdee J, Sangsri R, Patchsung M, Aphicho K, Suraritdechachai S, Huguenin-Dezot N and Uttamapinant C <7 more author(s)>
    Ref: Angew Chem Int Ed Engl, :e202203061, 2022 : PubMed

            

    Title: Novel Pet-Degrading Enzymes: Structure-Function from a Computational Perspective
    Berselli A, Ramos MJ, Menziani MC
    Ref: Chembiochem, 22:2032, 2021 : PubMed

            

    Title: General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis
    Chen CC, Han X, Li X, Jiang P, Niu D, Ma L, Liu W, Li S, Qu Y and Chen, CC <8 more author(s)>
    Ref: Nature Catalysis, 4:425, 2021 : PubMed

            

    Title: Yeast cell surface display of bacterial PET hydrolase as a sustainable biocatalyst for the degradation of polyethylene terephthalate
    Chen Z, Xiao Y, Weber G, Wei R, Wang Z
    Ref: Methods Enzymol, 648:457, 2021 : PubMed

            

    Title: Enhancing PET hydrolytic enzyme activity by fusion of the cellulose-binding domain of cellobiohydrolase I from Trichoderma reesei
    Dai L, Qu Y, Huang JW, Hu Y, Hu H, Li S, Chen CC, Guo RT
    Ref: J Biotechnol, 334:47, 2021 : PubMed

            

    Title: Structural analysis of PET-degrading enzymes PETase and MHETase from Ideonella sakaiensis
    Graf LG, Michels EAP, Yew Y, Liu W, Palm GJ, Weber G
    Ref: Methods Enzymol, 648:337, 2021 : PubMed

            

    Title: Surface display as a functional screening platform for detecting enzymes active on PET
    Heyde SAH, Arnling Baath J, Westh P, Norholm MHH, Jensen K
    Ref: Microb Cell Fact, 20:93, 2021 : PubMed

            

    Title: Structural Insights into Carboxylic Polyester-Degrading Enzymes and Their Functional Depolymerizing Neighbors
    Leitao AL, Enguita FJ
    Ref: Int J Mol Sci, 22:, 2021 : PubMed

            

    Title: Emerging Roles of PETase and MHETase in the Biodegradation of Plastic Wastes
    Maity W, Maity S, Bera S, Roy A
    Ref: Appl Biochem Biotechnol, 193:2699, 2021 : PubMed

            

    Title: Positive Charge Introduction on the Surface of Thermostabilized PET Hydrolase Facilitates PET Binding and Degradation
    Nakamura A, Kobayashi N, Koga N, Iino R
    Ref: ACS Catal, 11:8550, 2021 : PubMed

            

    Title: Structural basis for Ca(2+)-dependent catalysis of a cutinase-like enzyme and its engineering: application to enzymatic PET depolymerization
    Oda M
    Ref: Biophys Physicobiol, 18:168, 2021 : PubMed

            

    Title: Implications for the PET decomposition mechanism through similarity and dissimilarity between PETases from Rhizobacter gummiphilus and Ideonella sakaiensis
    Sagong HY, Son HF, Seo H, Hong H, Lee D, Kim KJ
    Ref: J Hazard Mater, :, 2021 : PubMed

            

    Title: Assessment of the PETase conformational changes induced by poly(ethylene terephthalate) binding
    da Costa CHS, Dos Santos AM, Alves CN, Marti S, Moliner V, Santana K, Lameira J
    Ref: Proteins, :, 2021 : PubMed

            

    Title: Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives
    Carr CM, Clarke DJ, Dobson ADW
    Ref: Front Microbiol, 11:571265, 2020 : PubMed

            

    Title: PMBD: a Comprehensive Plastics Microbial Biodegradation Database
    Gan Z, Zhang H
    Ref: Database (Oxford), 2019:bav119, 2019 : PubMed

            

    Title: Biodegradation of waste PET: A sustainable solution for dealing with plastic pollution
    Hiraga K, Taniguchi I, Yoshida S, Kimura Y, Oda K
    Ref: EMBO Rep, 20:e49365, 2019 : PubMed

            

    Title: Characterization and engineering of a plastic-degrading aromatic polyesterase
    Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, Dominick G, Duman R and Beckham GT <11 more author(s)>
    Ref: Proc Natl Acad Sci U S A, 115:E4350, 2018 : PubMed

            

    Title: Structural studies reveal the molecular mechanism of PETase
    Chen CC, Han X, Ko TP, Liu W, Guo RT
    Ref: Febs J, 285:3717, 2018 : PubMed

            

    Title: Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase
    Fecker T, Galaz-Davison P, Engelberger F, Narui Y, Sotomayor M, Parra LP, Ramirez-Sarmiento CA
    Ref: Biophysical Journal, 114:1302, 2018 : PubMed

            

    Title: Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation
    Joo S, Cho IJ, Seo H, Son HF, Sagong HY, Shin TJ, Choi SY, Lee SY, Kim KJ
    Ref: Nat Commun, 9:382, 2018 : PubMed

            

    Title: Structural Dynamics of the PET-Degrading Cutinase-like Enzyme from Saccharomonospora viridis AHK190 in Substrate-Bound States Elucidates the Ca(2+)-Driven Catalytic Cycle
    Numoto N, Kamiya N, Bekker GJ, Yamagami Y, Inaba S, Ishii K, Uchiyama S, Kawai F, Ito N, Oda M
    Ref: Biochemistry, 57:5289, 2018 : PubMed

            

    Title: Structural insight into catalytic mechanism of PET hydrolase
    Han X, Liu W, Huang JW, Ma J, Zheng Y, Ko TP, Xu L, Cheng YS, Chen CC, Guo RT
    Ref: Nat Commun, 8:2106, 2017 : PubMed

            

    Title: Small cause, large effect: Structural characterization of cutinases from Thermobifida cellulosilytica
    Ribitsch D, Hromic A, Zitzenbacher S, Zartl B, Gamerith C, Pellis A, Jungbauer A, Lyskowski A, Steinkellner G and Guebitz GM <3 more author(s)>
    Ref: Biotechnol Bioeng, 114:2481, 2017 : PubMed

            

    Title: Structural basis for the Ca(2+)-enhanced thermostability and activity of PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190
    Miyakawa T, Mizushima H, Ohtsuka J, Oda M, Kawai F, Tanokura M
    Ref: Applied Microbiology & Biotechnology, 99:4297, 2015 : PubMed

            

    Title: Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca
    Roth C, Wei R, Oeser T, Then J, Follner C, Zimmermann W, Strater N
    Ref: Applied Microbiology & Biotechnology, 98:7815, 2014 : PubMed

            

    Title: Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes
    Wei R, Oeser T, Zimmermann W
    Ref: Adv Appl Microbiol, 89:267, 2014 : PubMed

            

    Title: Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76A resolution
    Kitadokoro K, Thumarat U, Nakamura R, Nishimura K, Karatani H, Suzuki H, Kawai F
    Ref: Polymer Degradation and Stability, 97:771, 2012 : PubMed

            

    Title: Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach
    Sulaiman S, Yamato S, Kanaya E, Kim JJ, Koga Y, Takano K, Kanaya S
    Ref: Applied Environmental Microbiology, 78:1556, 2012 : PubMed

            

    Title: Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9 A resolution
    Wei Y, Swenson L, Castro C, Derewenda U, Minor W, Arai H, Aoki J, Inoue K, Servin-Gonzalez L, Derewenda ZS
    Ref: Structure, 6:511, 1998 : PubMed

            

    Title: Structure and function engineered Pseudomonas mendocina lipase
    Boston M, Requadt C, Danko S, Jarnagin A, Ashizawa E, Wu S, Poulose AJ, Bott R
    Ref: Methods Enzymol, 284:298, 1997 : PubMed

            

no Image
&gt; Structures for Polyesterase-lipase-cutinase (111)
&gt; List of Gene_Locus for Polyesterase-lipase-cutinase (187)


Top
FamilyTriacylglycerol-lipase-OBL1-like
CommentFamily extracted from Lipase_3. (from InterPro) This family includes triacylglycerol lipase OBL1 from Arabidopsis thaliana and Nicotiana tabacum, which are homologues of the acid lipase from castor bean (RcOBL1). OBL1 is an acid GXSXG - lipase localized to lipid droplets that can hydrolyse a range of triacylglycerols without a clear preference for acyl-chains. It can also cleave 1,2-diacylglycerol, 1,3-diacylglycerol and 1-monoacylglycerol, but not phosphatidylcholine, phosphatidylethanolamine, or sterol esters. It is required for pollen tube growth. Triacylglycerol hydrolysis by OBL1 may provide acyl groups for the synthesis of membrane lipids in growing pollen tubes
InterproIPR044819 (Triacylglycerol lipase OBL1-like OBL-like)Pdoc
PFamPrintsProsite
EC no EC numberTables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Characterization of the enzymatic activity and physiological function of the lipid droplet-associated triacylglycerol lipase AtOBL1
    Muller AO, Ischebeck T
    Ref: New Phytol, 217:1062, 2018 : PubMed

            

no Image
no Structure
&gt; List of Gene_Locus for Triacylglycerol-lipase-OBL1-like (217)


Top
FamilyYolk-Protein_dipter
CommentThese proteins sometimes referred as vitellogenins are specific to higher dipters and are not evolutionnary related to the vitellogenins accumulated in oocytes of most oviparous animals
InterproIPR000734 (Lipase)Pdoc
PFamPF00151 (Lipase)Prints PR00821Prosite PS00120
EC no EC numberTables FASTAPeptides in fastaNucleotides in fasta
Alignmentwith Multalin:Text only/graphic displaywith Clustalw:No colour/coloured with Mview
DendrogramGraphical display, obtained with the dnd file produced by Clustalw
    Title: Cyclorraphan yolk proteins and lepidopteran minor yolk proteins originate from two unrelated lipase families
    Hens K, Lemey P, Macours N, Francis C, Huybrechts R
    Ref: Insect Molecular Biology, 13:615, 2004 : PubMed

            

    Title: The major yolk proteins of higher Diptera are homologs of a class of minor yolk proteins in lepidoptera
    Sappington TW
    Ref: Journal of Molecular Evolution, 55:470, 2002 : PubMed

            

    Title: Cloning and characterization of three Musca domestica yolk protein genes
    White NM, Bownes M
    Ref: Insect Molecular Biology, 6:329, 1997 : PubMed

            

    Title: Why is there sequence similarity between insect yolk proteins and vertebrate lipases?
    Bownes M
    Ref: J Lipid Res, 33:777, 1992 : PubMed

            

no Image
no Structure
&gt; List of Gene_Locus for Yolk-Protein_dipter (22)



Send your questions or comments to :
Mail to: Nicolas Lenfant, Thierry Hotelier, Yves Bourne, Pascale Marchot and Arnaud Chatonnet.
Please cite: Lenfant 2013 Nucleic.Acids.Res. or Marchot Chatonnet 2012 Prot.Pept Lett.
For technical information about these pages see:
ESTHER Home Page and ACEDB Home Page
AcePerl Lincoln Stein Home Page
webmaster

Acknowledgements and disclaimer