The RsbQ alpha/beta hydrolase and RsbP serine phosphatase form a signaling pair required to activate the general stress factor Sigma factor sigb of Bacillus subtilis in response to energy limitation. In plants RsbQ-like proteins could function downstream of strigolactone synthesis (Strigolactones are endogenous butenolide hormones that regulate shoot and root architecture, and stimulate the branching of arbuscular mycorrhizal fungi). DWARF14(D14) act as component of hormone signaling or as enzymes that participates in the conversion of strigolactones to the bioactive form. Karrikins (KARs) represent a family of butenolide compounds found in smoke that trigger the germination of many species after fire. KAI2 (karrikin-insensitive2) is required for normal seed germination and seedling growth. Conn et al. showed that convergent evolution of strigolactone perception enabled host detection in parasitic plants. Mutations in KAI2, encoding the proposed karrikin receptor, result in hypersensitivity to water deprivation.. The parasite Striga hermonthica is causing severe yield losses of cereals in sub-Saharan Africa. The germination of Striga seeds relies on host-released strigolactones (SLs) signaling molecules. SL analogs are developped as 'suicidal germination agents'(The induction of Striga seeds germination in the absence of the host leads to the death of germinating parasite). Wang et al. show that origins of strigolactone and karrikin signaling in plants could come from horizontal transfer from bacteria. The fungi D14 Fungal-D14-Strigolactone-R although homologous to family RsbQ-like of plant strigolactone receptors are somewhat far related and cannot supplement lack of receptor in arabidopsis for example
Database
Sequences
Interpro
|
IPR031143 (Strigolactone esterase D14 family D14_fam)
28 moreTitle: KAI2 can do: Karrikin Receptor Function in Plant Development and Response to Abiotic and Biotic Factors Varshney K, Gutjahr C Ref: Plant Cell Physiol, :, 2023 : PubMed
The alpha/beta hydrolase KARRIKIN INSENSITIVE 2 (KAI2) functions as a receptor for a yet undiscovered phytohormone, provisionally termed KAI2-ligand (KL). In addition, it perceives karrikin, a butenolide compound found in the smoke of burnt plant material. KAI2-mediated signalling is involved in regulating seed germination and in shaping seedling and adult plant morphology, both above and below ground. It also governs responses to various abiotic stimuli and stresses and shapes biotic interactions. KAI2-signalling is being linked to an elaborate cross-talk with other phytohormone pathways such as auxin, gibberellin, abscisic acid, ethylene, and salicylic acid signalling, in addition to light and nutrient starvation signalling. Further connections will likely be revealed in the future. This article summarizes recent advances in unravelling the function of KAI2-mediated signalling and its interaction with other signalling pathways.
Strigolactones (SLs) are a class of important plant hormones mainly regulating plant architecture such as branching, which is crucial for crop yield. It is valuable to study SL signaling pathway and its physiological function in sugarcane, the most important sugar crop, for further molecular breeding. Here, two putative SL receptors SsD14a/b and the interacting F-box protein SsMAX2 were identified in Saccharum spontaneum. SL induced both SsD14a and SsD14b to interact with SsMAX2 in yeast. SsD14a, but not SsD14b, could bind with AtMAX2 and AtSMXL7/SsSMXL7. Overexpression of SsD14a or SsMAX2 rescued the increased branching phenotypes of Arabidopsis thaliana d14-1 or max2-3 mutants, respectively. Moreover, the crystal structure of N-terminal truncated SsD14a was solved, with an overall structure identical to AtD14 and OsD14 in the open state, consistent with its conserved branching suppression capacity in Arabidopsis. In line with the biochemical observations, SsD14b could not completely complement in d14-1 although these two SsD14 proteins have almost identical primary sequences except for very few residues. Complement with the combination of SsD14b and SsMAX2 still failed to rescue the d14-1 max2-3 double mutant multi-branching phenotype, indicating SsD14b-AtSMXL7 complex formation is required for regulating branching. Mutagenesis analyses revealed that residue R310 at alpha10 helix of SsD14a was crucial for the binding with SsSMXL7/AtSMXL7 but not SsMAX2. The site-equivalent single-residue P304R substitution enabled SsD14b to bind with AtMAX2 and AtSMXL7/SsSMXL7 and to rescue the phenotype of d14-1 max2-3 together with SsMAX2. Moreover, this conserved Arg residue across species including rice and Arabidopsis determined the activity of SL receptors through maintaining their interaction with SMXL repressors. Taken together, our work identified conserved and divergent strigolactone receptors in sugarcane core SL signaling pathway and revealed a key residue crucial for plant branching control.
Parasitic weeds of the genera Striga and Orobanche spp. cause severe yield losses in agriculture, especially in developing countries and the Mediterranean. Seeds of these weeds germinate by a chemical signal exuded by the roots of host plants. The radicle thus produced attaches to the root of the host plant, which can then supply nutrients to the parasite. There is an urgent need to control these weeds to ensure better agricultural production. The naturally occurring chemical signals are strigolactones (SLs), e.g. strigol and orobanchol. One option to control these weeds involves the use of SLs as suicidal germination agents, where germination takes place in the absence of a host. Owing to the lack of nutrients, the germinated seeds will die. The structure of natural SLs is too complex to allow multigram synthesis. Therefore, SL analogues are developed for this purpose. Examples are GR24 and Nijmegen-1. In this paper, the SL analogues Nijmegen-1 and Nijmegen-1 Me were applied in the field as suicidal germination agents. Both SL analogues were formulated using an appropriate EC-approved emulsifier (polyoxyethylene sorbitol hexaoleate) and applied to tobacco (Nicotiana tabacum L.) fields infested by Orobanche ramosa L. (hemp broomrape), following a strict protocol. Four out of 12 trials showed a reduction in broomrape of <=95%, two trials were negative, two showed a moderate result, one was unclear and in three cases there was no Orobanche problem in the year of the trials. The trial plots were ca 2000 m(2) ; half of that area was treated with stimulant emulsion, the other half was not treated. The optimal amount of stimulant was 6.25 g ha(-1) . A preconditioning prior to the treatment was a prerequisite for a successful trial. In conclusion, the suicidal germination approach to reducing O. ramosa in tobacco fields using formulated SL analogues was successful. Two other options for weed control are discussed: deactivation of stimulants prior to action and biocontrol by Fusarium oxysporum. 2016 Society of Chemical Industry.
        
28 lessTitle: KAI2 can do: Karrikin Receptor Function in Plant Development and Response to Abiotic and Biotic Factors Varshney K, Gutjahr C Ref: Plant Cell Physiol, :, 2023 : PubMed
The alpha/beta hydrolase KARRIKIN INSENSITIVE 2 (KAI2) functions as a receptor for a yet undiscovered phytohormone, provisionally termed KAI2-ligand (KL). In addition, it perceives karrikin, a butenolide compound found in the smoke of burnt plant material. KAI2-mediated signalling is involved in regulating seed germination and in shaping seedling and adult plant morphology, both above and below ground. It also governs responses to various abiotic stimuli and stresses and shapes biotic interactions. KAI2-signalling is being linked to an elaborate cross-talk with other phytohormone pathways such as auxin, gibberellin, abscisic acid, ethylene, and salicylic acid signalling, in addition to light and nutrient starvation signalling. Further connections will likely be revealed in the future. This article summarizes recent advances in unravelling the function of KAI2-mediated signalling and its interaction with other signalling pathways.
Strigolactones (SLs) are plant hormones and important signaling molecules required to promote the arbuscular mycorrhizal (AM) symbiosis. While in plants an alpha/beta-hydrolase, DWARF14 (D14), was shown to act as a receptor that binds and cleaves SLs, the fungal receptor for SLs is unknown. Since AM fungi are currently not genetically tractable, in this study, we used the fungal pathogen Cryphonectria parasitica for which gene deletion protocols exist, as a model, as we have previously shown that it responds to SLs. By means of computational, biochemical and genetic analyses we identified a D14 structural homologue, CpD14. Molecular homology modelling and docking support the prediction that CpD14 interacts with and hydrolyses SLs. The recombinant CpD14 protein shows alpha/beta hydrolytic activity in vitro against the SLs synthetic analogue GR24; its enzymatic activity requires an intact Ser/His/Asp catalytic triad. CpD14 expression in the d14-1 loss-of-function Arabidopsis thaliana line did not rescue the plant mutant phenotype. However, gene inactivation by knock-out homologous recombination reduced fungal sensitivity to SLs. These results indicate that CpD14 is involved in SLs responses in C. parasitica and strengthen the role of SLs as multifunctional molecules acting in plant microbe-interactions.
Strigolactones (SLs) are a class of important plant hormones mainly regulating plant architecture such as branching, which is crucial for crop yield. It is valuable to study SL signaling pathway and its physiological function in sugarcane, the most important sugar crop, for further molecular breeding. Here, two putative SL receptors SsD14a/b and the interacting F-box protein SsMAX2 were identified in Saccharum spontaneum. SL induced both SsD14a and SsD14b to interact with SsMAX2 in yeast. SsD14a, but not SsD14b, could bind with AtMAX2 and AtSMXL7/SsSMXL7. Overexpression of SsD14a or SsMAX2 rescued the increased branching phenotypes of Arabidopsis thaliana d14-1 or max2-3 mutants, respectively. Moreover, the crystal structure of N-terminal truncated SsD14a was solved, with an overall structure identical to AtD14 and OsD14 in the open state, consistent with its conserved branching suppression capacity in Arabidopsis. In line with the biochemical observations, SsD14b could not completely complement in d14-1 although these two SsD14 proteins have almost identical primary sequences except for very few residues. Complement with the combination of SsD14b and SsMAX2 still failed to rescue the d14-1 max2-3 double mutant multi-branching phenotype, indicating SsD14b-AtSMXL7 complex formation is required for regulating branching. Mutagenesis analyses revealed that residue R310 at alpha10 helix of SsD14a was crucial for the binding with SsSMXL7/AtSMXL7 but not SsMAX2. The site-equivalent single-residue P304R substitution enabled SsD14b to bind with AtMAX2 and AtSMXL7/SsSMXL7 and to rescue the phenotype of d14-1 max2-3 together with SsMAX2. Moreover, this conserved Arg residue across species including rice and Arabidopsis determined the activity of SL receptors through maintaining their interaction with SMXL repressors. Taken together, our work identified conserved and divergent strigolactone receptors in sugarcane core SL signaling pathway and revealed a key residue crucial for plant branching control.
        
Title: Origins of strigolactone and karrikin signaling in plants Wang Q, Smith SM, Huang J Ref: Trends Plant Sci, :, 2021 : PubMed
Strigolactones (SLs) and karrikins (KARs) are butenolides that influence multiple aspects of plant growth and development. D14 and KAI2 are members of the alpha/beta-fold hydrolase superfamily and act as receptors of SLs and KARs, as well as of unidentified endogenous KAI2-ligands (KLs). Phylogenetic analyses suggest that plant KAI2 was derived from bacterial RsbQ via horizontal gene transfer (HGT) before the emergence of streptophytes. The D14/KAI2 and RsbQ proteins share conserved tertiary structures and functional features. In this opinion article, we suggest that the acquisition of RsbQ by plant cells was fundamental to the formation of butenolide sensing systems. Recruitment of additional signal transduction components and gene duplication subsequently led to versatile butenolide signaling systems throughout land plants.
        
Title: Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice Duan J, Yu H, Yuan K, Liao Z, Meng X, Jing Y, Liu G, Chu J, Li J Ref: Proc Natl Acad Sci U S A, 116:14319, 2019 : PubMed
Strigolactones (SLs), a group of terpenoid lactones derived from carotenoids, are plant hormones that control numerous aspects of plant development. Although the framework of SL signaling that the repressor DWARF 53 (D53) could be SL-dependently degraded via the SL receptor D14 and F-box protein D3 has been established, the downstream response genes to SLs remain to be elucidated. Here we show that the cytokinin (CK) content is dramatically increased in shoot bases of the rice SL signaling mutant d53 By examining transcript levels of all the CK metabolism-related genes after treatment with SL analog GR24, we identified CYTOKININ OXIDASE/DEHYDROGENASE 9 (OsCKX9) as a primary response gene significantly up-regulated within 1 h of treatment in the wild type but not in d53 We also found that OsCKX9 functions as a cytosolic and nuclear dual-localized CK catabolic enzyme, and that the overexpression of OsCKX9 suppresses the browning of d53 calli. Both the CRISPR/Cas9-generated OsCKX9 mutants and OsCKX9-overexpressing transgenic plants showed significant increases in tiller number and decreases in plant height and panicle size, suggesting that the homeostasis of OsCKX9 plays a critical role in regulating rice shoot architecture. Moreover, we identified the CK-inducible rice type-A response regulator OsRR5 as the secondary SL-responsive gene, whose expression is significantly repressed after 4 h of GR24 treatment in the wild type but not in osckx9 These findings reveal a comprehensive plant hormone cross-talk in which SL can induce the expression of OsCKX9 to down-regulate CK content, which in turn triggers the response of downstream genes.
        
Title: Binding or Hydrolysis? How Does the Strigolactone Receptor Work? Marzec M, Brewer P Ref: Trends Plant Sci, 24:571, 2019 : PubMed
The strigolactone (SL) receptor in plants is unusual in that it both binds and hydrolyses SL molecules. Landmark studies had proposed that a product of hydrolysis irreversibly binds the receptor and then activates signalling. However, recent breakthrough articles (Seto et al. Nat. Commun. 2019;10:191 and Shabek et al. Nature 2018;563:652-656) have revealed a new model based on inhibition of hydrolysis by protein conformation.
The perception mechanism for the strigolactone (SL) class of plant hormones has been a subject of debate because their receptor, DWARF14 (D14), is an alpha/beta-hydrolase that can cleave SLs. Here we show via time-course analyses of SL binding and hydrolysis by Arabidopsis thaliana D14, that the level of uncleaved SL strongly correlates with the induction of the active signaling state. In addition, we show that an AtD14(D218A) catalytic mutant that lacks enzymatic activity is still able to complement the atd14 mutant phenotype in an SL-dependent manner. We conclude that the intact SL molecules trigger the D14 active signaling state, and we also describe that D14 deactivates bioactive SLs by the hydrolytic degradation after signal transmission. Together, these results reveal that D14 is a dual-functional receptor, responsible for both the perception and deactivation of bioactive SLs.
Roots form highly complex systems varying in growth direction and branching pattern to forage for nutrients efficiently. Here mutations in the KAI2 (KARRIKIN INSENSITIVE) alpha/beta-fold hydrolase and the MAX2 (MORE AXILLARY GROWTH 2) F-box leucine-rich protein, which together perceive karrikins (smoke-derived butenolides), caused alteration in root skewing in Arabidopsis thaliana. This phenotype was independent of endogenous strigolactones perception by the D14 alpha/beta-fold hydrolase and MAX2. Thus, KAI2/MAX2 effect on root growth may be through the perception of endogenous KAI2-ligands (KLs), which have yet to be identified. Upon perception of a ligand, a KAI2/MAX2 complex is formed together with additional target proteins before ubiquitination and degradation through the 26S proteasome. Using a genetic approach, we show that SMAX1 (SUPPRESSOR OF MAX2-1)/SMXL2 and SMXL6,7,8 (SUPPRESSOR OF MAX2-1-LIKE) are also likely degradation targets for the KAI2/MAX2 complex in the context of root skewing. In A. thaliana therefore, KAI2 and MAX2 act to limit root skewing, while kai2's gravitropic and mechano-sensing responses remained largely unaffected. Many proteins are involved in root skewing, and we investigated the link between MAX2 and two members of the SKS/SKU family. Though KLs are yet to be identified in plants, our data support the hypothesis that they are present and can affect root skewing.
        
Title: Comparing and Contrasting the Multiple Roles of Butenolide Plant Growth Regulators: Strigolactones and Karrikins in Plant Development and Adaptation to Abiotic Stresses Yang T, Lian Y, Wang C Ref: Int J Mol Sci, 20:, 2019 : PubMed
Strigolactones (SLs) and karrikins (KARs) are both butenolide molecules that play essential roles in plant growth and development. SLs are phytohormones, with SLs having known functions within the plant they are produced in, while KARs are found in smoke emitted from burning plant matter and affect seeds and seedlings in areas of wildfire. It has been suggested that SL and KAR signaling may share similar mechanisms. The alpha/beta hydrolases DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2), which act as receptors of SL and KAR, respectively, both interact with the F-box protein MORE AXILLARY GROWTH 2 (MAX2) in order to target SUPPRESSOR OF MAX2 1 (SMAX1)-LIKE/D53 family members for degradation via the 26S proteasome. Recent reports suggest that SLs and/or KARs are also involved in regulating plant responses and adaptation to various abiotic stresses, particularly nutrient deficiency, drought, salinity, and chilling. There is also crosstalk with other hormone signaling pathways, including auxin, gibberellic acid (GA), abscisic acid (ABA), cytokinin (CK), and ethylene (ET), under normal and abiotic stress conditions. This review briefly covers the biosynthetic and signaling pathways of SLs and KARs, compares their functions in plant growth and development, and reviews the effects of any crosstalk between SLs or KARs and other plant hormones at various stages of plant development. We also focus on the distinct responses, adaptations, and regulatory mechanisms related to SLs and/or KARs in response to various abiotic stresses. The review closes with discussion on ways to gain additional insights into the SL and KAR pathways and the crosstalk between these related phytohormones.
        
Title: Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis Lanfranco L, Fiorilli V, Venice F, Bonfante P Ref: J Exp Bot, 69:2175, 2018 : PubMed
Strigolactones (SLs) first evolved as regulators of simple developmental processes in very ancient plant lineages, and then assumed new roles to sustain the increasing biological complexity of land plants. Their versatility is also shown by the fact that during evolution they have been exploited, once released in the rhizosphere, as a communication system towards plant-interacting organisms even belonging to different kingdoms. Here, we reviewed the impact of SLs on soil microbes, paying particular attention to arbuscular mycorrhizal fungi (AMF). SLs induce several responses in AMF, including spore germination, hyphal branching, mitochondrial metabolism, transcriptional reprogramming, and production of chitin oligosaccharides which, in turn, stimulate early symbiotic responses in the host plant. In the specific case study of the AMF Gigaspora margarita, SLs are also perceived, directly or indirectly, by the well-characterized population of endobacteria, with an increase of bacterial divisions and the activation of specific transcriptional responses. The dynamics of SLs during AM root colonization were also surveyed. Although not essential for the establishment of this mutualistic association, SLs act as positive regulators as they are relevant to achieve the full extent of colonization. This possibly occurs through a complex crosstalk with other hormones such as auxin, abscisic acid, and gibberellins.
Strigolactones (SLs) are plant hormones that inhibit shoot branching and act as signals in communications with symbiotic fungi and parasitic weeds in the rhizosphere. SL signaling is mediated by DWARF14 (D14), which is an alpha/beta-hydrolase that cleaves SLs into an ABC tricyclic lactone and a butenolide group (i.e. D-ring). This cleavage reaction (hydrolysis and dissociation) is important for inducing the interaction between D14 and its target proteins, including D3 and D53. In this study, a hydrolysis-resistant SL analog was predicted to inhibit the activation of the D14 receptor, thereby disrupting the SL signaling pathway. To test this prediction, carba-SL compounds, in which the ether oxygen of the D-ring or the phenol ether oxygen of the SL agonist (GR24 or 4-bromo debranone) was replaced with a methylene group, were synthesized as novel D14 antagonists. Subsequent biochemical and physiological studies indicated that carba-SLs blocked the interaction between D14 and D53 by inhibiting D14 hydrolytic activity. They also suppressed the SL-induced inhibition of rice tiller outgrowths. Additionally, carba-SLs antagonized the SL response in a Striga parasitic weed species. Structural analyses revealed that the D-ring of 7'-carba-4BD was hydrolyzed by D14 but did not dissociate from the 4BD skeleton. Thus, 7'-carba-4BD functioned as an antagonist rather than an agonist. Thus, the hydrolysis of the D-ring of SLs may be insufficient for activating the receptor. This study provides data relevant to designing SL receptor antagonists.
        
Title: Irreversible strigolactone recognition: a non-canonical mechanism for hormone perception Yao R, Chen L, Xie D Ref: Curr Opin Plant Biol, 45:155, 2018 : PubMed
Unveiling of hormone perception is central to comprehending hormone action. It is generally recognized that an active hormone molecule binds its receptor to initiate hormone signaling, subsequently dissociates from its receptor without being changed, and then initiates the next round of hormone perception. However, recent studies discovered that the alpha/beta hydrolase DWARF14 serves as a non-canonical receptor for the plant hormone strigolactone (SL) to generate the active form of SL which remains covalently bound in an irreversible manner, triggering SL signal transduction. In this short review, we will discuss the recent advances in uncovering this unprecedented non-canonical mechanism for hormone perception.
BACKGROUND: Strigolactones (SLs) are a class of plant hormones that control many aspects of plant growth. The SL signalling mechanism is homologous to that of karrikins (KARs), smoke-derived compounds that stimulate seed germination. In angiosperms, the SL receptor is an alpha/beta-hydrolase known as DWARF14 (D14); its close homologue, KARRIKIN INSENSITIVE2 (KAI2), functions as a KAR receptor and likely recognizes an uncharacterized, endogenous signal ('KL'). Previous phylogenetic analyses have suggested that the KAI2 lineage is ancestral in land plants, and that canonical D14-type SL receptors only arose in seed plants; this is paradoxical, however, as non-vascular plants synthesize and respond to SLs. RESULTS: We have used a combination of phylogenetic and structural approaches to re-assess the evolution of the D14/KAI2 family in land plants. We analysed 339 members of the D14/KAI2 family from land plants and charophyte algae. Our phylogenetic analyses show that the divergence between the eu-KAI2 lineage and the DDK (D14/DLK2/KAI2) lineage that includes D14 occurred very early in land plant evolution. We show that eu-KAI2 proteins are highly conserved, and have unique features not found in DDK proteins. Conversely, we show that DDK proteins show considerable sequence and structural variation to each other, and lack clearly definable characteristics. We use homology modelling to show that the earliest members of the DDK lineage structurally resemble KAI2 and that SL receptors in non-seed plants likely do not have D14-like structure. We also show that certain groups of DDK proteins lack the otherwise conserved MORE AXILLARY GROWTH2 (MAX2) interface, and may thus function independently of MAX2, which we show is highly conserved throughout land plant evolution. CONCLUSIONS: Our results suggest that D14-like structure is not required for SL perception, and that SL perception has relatively relaxed structural requirements compared to KAI2-mediated signalling. We suggest that SL perception gradually evolved by neo-functionalization within the DDK lineage, and that the transition from KAI2-like to D14-like protein may have been driven by interactions with protein partners, rather than being required for SL perception per se.
Drought causes substantial reductions in crop yields worldwide. Therefore, we set out to identify new chemical and genetic factors that regulate drought resistance in Arabidopsis thaliana. Karrikins (KARs) are a class of butenolide compounds found in smoke that promote seed germination, and have been reported to improve seedling vigor under stressful growth conditions. Here, we discovered that mutations in KARRIKIN INSENSITIVE2 (KAI2), encoding the proposed karrikin receptor, result in hypersensitivity to water deprivation. We performed transcriptomic, physiological and biochemical analyses of kai2 plants to understand the basis for KAI2-regulated drought resistance. We found that kai2 mutants have increased rates of water loss and drought-induced cell membrane damage, enlarged stomatal apertures, and higher cuticular permeability. In addition, kai2 plants have reduced anthocyanin biosynthesis during drought, and are hyposensitive to abscisic acid (ABA) in stomatal closure and cotyledon opening assays. We identified genes that are likely associated with the observed physiological and biochemical changes through a genome-wide transcriptome analysis of kai2 under both well-watered and dehydration conditions. These data provide evidence for crosstalk between ABA- and KAI2-dependent signaling pathways in regulating plant responses to drought. A comparison of the strigolactone receptor mutant d14 (DWARF14) to kai2 indicated that strigolactones also contributes to plant drought adaptation, although not by affecting cuticle development. Our findings suggest that chemical or genetic manipulation of KAI2 and D14 signaling may provide novel ways to improve drought resistance.
        
Title: Found in Translation: Applying Lessons from Model Systems to Strigolactone Signaling in Parasitic Plants Lumba S, Subha A, McCourt P Ref: Trends in Biochemical Sciences, 42:556, 2017 : PubMed
Strigolactones (SLs) are small molecules that act as endogenous hormones to regulate plant development as well as exogenous cues that help parasitic plants to infect their hosts. Given that parasitic plants are experimentally challenging systems, researchers are using two approaches to understand how they respond to host-derived SLs. The first involves extrapolating information on SLs from model genetic systems to dissect their roles in parasitic plants. The second uses chemicals to probe SL signaling directly in the parasite Striga hermonthica. These approaches indicate that parasitic plants have co-opted a family of alpha/beta hydrolases to perceive SLs. The importance of this genetic and chemical information cannot be overstated since parasitic plant infestations are major obstacles to food security in the developing world.
MAIN CONCLUSION: A set of PpKAI2 - LIKE paralogs that may encode strigolactone receptors in Physcomitrella patens were identified through evolutionary, structural, and transcriptional analyses, suggesting that strigolactone perception may have evolved independently in basal land plants in a similar manner as spermatophytes. Carotenoid-derived compounds known as strigolactones are a new class of plant hormones that modulate development and interactions with parasitic plants and arbuscular mycorrhizal fungi. The strigolactone receptor protein DWARF14 (D14) belongs to the alpha/beta hydrolase family. D14 is closely related to KARRIKIN INSENSITIVE2 (KAI2), a receptor of smoke-derived germination stimulants called karrikins. Strigolactone and karrikin structures share a butenolide ring that is necessary for bioactivity. Charophyte algae and basal land plants produce strigolactones that influence their development. However phylogenetic studies suggest that D14 is absent from algae, moss, and liverwort genomes, raising the question of how these basal plants perceive strigolactones. Strigolactone perception during seed germination putatively evolved in parasitic plants through gene duplication and neofunctionalization of KAI2 paralogs. The moss Physcomitrella patens shows an increase in KAI2 gene copy number, similar to parasitic plants. In this study we investigated whether P. patens KAI2-LIKE (PpKAI2L) genes may contribute to strigolactone perception. Based on phylogenetic analyses and homology modelling, we predict that a clade of PpKAI2L proteins have enlarged ligand-binding cavities, similar to D14. We observed that some PpKAI2L genes have transcriptional responses to the synthetic strigolactone GR24 racemate or its enantiomers. These responses were influenced by light and dark conditions. Moreover, (+)-GR24 seems to be the active enantiomer that induces the transcriptional responses of PpKAI2L genes. We hypothesize that members of specific PpKAI2L clades are candidate strigolactone receptors in moss.
        
Title: Smoke and Hormone Mirrors: Action and Evolution of Karrikin and Strigolactone Signaling Morffy N, Faure L, Nelson DC Ref: Trends Genet, 32:176, 2016 : PubMed
Karrikins and strigolactones are two classes of butenolide molecules that have diverse effects on plant growth. Karrikins are found in smoke and strigolactones are plant hormones, yet both molecules are likely recognized through highly similar signaling mechanisms. Here we review the most recent discoveries of karrikin and strigolactone perception and signal transduction. Two paralogous alpha/beta hydrolases, KAI2 and D14, are respectively karrikin and strigolactone receptors. D14 acts with an F-box protein, MAX2, to target SMXL/D53 family proteins for proteasomal degradation, and genetic data suggest that KAI2 acts similarly. There are striking parallels in the signaling mechanisms of karrikins, strigolactones, and other plant hormones, including auxins, jasmonates, and gibberellins. Recent investigations of host perception in parasitic plants have demonstrated that strigolactone recognition can evolve following gene duplication of KAI2.
Parasitic weeds of the genera Striga and Orobanche spp. cause severe yield losses in agriculture, especially in developing countries and the Mediterranean. Seeds of these weeds germinate by a chemical signal exuded by the roots of host plants. The radicle thus produced attaches to the root of the host plant, which can then supply nutrients to the parasite. There is an urgent need to control these weeds to ensure better agricultural production. The naturally occurring chemical signals are strigolactones (SLs), e.g. strigol and orobanchol. One option to control these weeds involves the use of SLs as suicidal germination agents, where germination takes place in the absence of a host. Owing to the lack of nutrients, the germinated seeds will die. The structure of natural SLs is too complex to allow multigram synthesis. Therefore, SL analogues are developed for this purpose. Examples are GR24 and Nijmegen-1. In this paper, the SL analogues Nijmegen-1 and Nijmegen-1 Me were applied in the field as suicidal germination agents. Both SL analogues were formulated using an appropriate EC-approved emulsifier (polyoxyethylene sorbitol hexaoleate) and applied to tobacco (Nicotiana tabacum L.) fields infested by Orobanche ramosa L. (hemp broomrape), following a strict protocol. Four out of 12 trials showed a reduction in broomrape of <=95%, two trials were negative, two showed a moderate result, one was unclear and in three cases there was no Orobanche problem in the year of the trials. The trial plots were ca 2000 m(2) ; half of that area was treated with stimulant emulsion, the other half was not treated. The optimal amount of stimulant was 6.25 g ha(-1) . A preconditioning prior to the treatment was a prerequisite for a successful trial. In conclusion, the suicidal germination approach to reducing O. ramosa in tobacco fields using formulated SL analogues was successful. Two other options for weed control are discussed: deactivation of stimulants prior to action and biocontrol by Fusarium oxysporum. 2016 Society of Chemical Industry.
Obligate parasitic plants in the Orobanchaceae germinate after sensing plant hormones, strigolactones, exuded from host roots. In Arabidopsis thaliana, the alpha/beta-hydrolase D14 acts as a strigolactone receptor that controls shoot branching, whereas its ancestral paralog, KAI2, mediates karrikin-specific germination responses. We observed that KAI2, but not D14, is present at higher copy numbers in parasitic species than in nonparasitic relatives. KAI2 paralogs in parasites are distributed into three phylogenetic clades. The fastest-evolving clade, KAI2d, contains the majority of KAI2 paralogs. Homology models predict that the ligand-binding pockets of KAI2d resemble D14. KAI2d transgenes confer strigolactone-specific germination responses to Arabidopsis thaliana. Thus, the KAI2 paralogs D14 and KAI2d underwent convergent evolution of strigolactone recognition, respectively enabling developmental responses to strigolactones in angiosperms and host detection in parasites.
Strigolactones are naturally occurring signaling molecules that affect plant development, fungi-plant interactions, and parasitic plant infestations. We characterized the function of 11 strigolactone receptors from the parasitic plant Striga hermonthica using chemical and structural biology. We found a clade of polyspecific receptors, including one that is sensitive to picomolar concentrations of strigolactone. A crystal structure of a highly sensitive strigolactone receptor from Striga revealed a larger binding pocket than that of the Arabidopsis receptor, which could explain the increased range of strigolactone sensitivity. Thus, the sensitivity of Striga to strigolactones from host plants is driven by receptor sensitivity. By expressing strigolactone receptors in Arabidopsis, we developed a bioassay that can be used to identify chemicals and crops with altered strigolactone levels.
KARRIKIN INSENSITIVE 2 (KAI2) is an alpha/beta hydrolase involved in seed germination and seedling development. It is essential for plant responses to karrikins, a class of butenolide compounds derived from burnt plant material that are structurally similar to strigolactone plant hormones. The mechanistic basis for the function of KAI2 in plant development remains unclear. We have determined the crystal structure of Arabidopsis thaliana KAI2 in space groups P2(1) 2(1) 2(1) (a =63.57 A, b =66.26 A, c =78.25 A) and P2(1) (a =50.20 A, b =56.04 A, c =52.43 A, beta =116.12degre) to 1.55 and 2.11A respectively. The catalytic residues are positioned within a large hydrophobic pocket similar to that of DAD2, a protein required for strigolactone response in Petunia hybrida. KAI2 possesses a second solvent-accessible pocket, adjacent to the active site cavity, which offers the possibility of allosteric regulation. The structure of KAI2 is consistent with its designation as a serine hydrolase, as well as previous data implicating the protein in karrikin and strigolactone signalling.
Strigolactones (SLs) are plant hormones that inhibit shoot branching. DWARF14 (D14) inhibits rice tillering and is an SL receptor candidate in the branching inhibition pathway, whereas the close homologue DWARF14-LIKE (D14L) participates in the signaling pathway of karrikins (KARs), which are derived from burnt vegetation as smoke stimulants of seed germination. We provide the first evidence for direct binding of the bioactive SL analogue GR24 to D14. Isothermal titration calorimetry measurements show a D14-GR24 binding affinity in the sub-micromolar range. Similarly, bioactive KAR1 directly binds D14L in the micromolar range. The crystal structure of rice D14 shows a compact alpha-/beta-fold hydrolase domain forming a deep ligand-binding pocket capable of accommodating GR24. Insertion of four alpha-helices between beta6 strand and alphaD helix forms the helical cap of the pocket, although the pocket is open to the solvent. The pocket contains the conserved catalytic triad Ser-His-Asp aligned with the oxyanion hole, suggesting hydrolase activity. Although these structural characteristics are conserved in D14L, the D14L pocket is smaller than that of D14. The KAR-insensitive mutation kai2-1 is located at the prominent long beta6-alphaD1 loop, which is characteristic in D14 and D14L, but not in related alpha-/beta-fold hydrolases.
Strigolactones (SLs) are phytohormones that inhibit shoot branching and function in the rhizospheric communication with symbiotic fungi and parasitic weeds. An alpha/beta-hydrolase protein, DWARF14 (D14), has been recognized to be an essential component of plant SL signalling, although its precise function remains unknown. Here we present the SL-dependent interaction of D14 with a gibberellin signalling repressor SLR1 and a possible mechanism of phytohormone perception in D14-mediated SL signalling. D14 functions as a cleavage enzyme of SLs, and the cleavage reaction induces the interaction with SLR1. The crystal structure of D14 shows that 5-hydroxy-3-methylbutenolide (D-OH), which is a reaction product of SLs, is trapped in the catalytic cavity of D14 to form an altered surface. The D14 residues recognizing D-OH are critical for the SL-dependent D14-SLR1 interaction. These results provide new insight into crosstalk between gibberellin and SL signalling pathways.
        
Title: KAI2- and MAX2-Mediated Responses to Karrikins and Strigolactones Are Largely Independent of HY5 in Arabidopsis Seedlings Waters MT, Smith SM Ref: Mol Plant, 6:63, 2013 : PubMed
Karrikins are butenolide compounds released from burning vegetation that stimulate seed germination and enhance seedling photomorphogenesis. Strigolactones are structurally similar plant hormones that regulate shoot and root development, and promote the germination of parasitic weed seeds. In Arabidopsis, the F-box protein MAX2 is required for responses to karrikins and strigolactones, and the alpha/beta hydrolase KAI2 is necessary for responses to karrikins. Both MAX2 and KAI2 are essential for normal light-dependent seedling development. The bZIP transcription factor HY5 acts downstream of multiple photoreceptors and promotes photomorphogenesis, but its relationship with MAX2 and KAI2 in terms of seedling development and responses to karrikins and strigolactones is poorly defined. Here, we demonstrate that HY5 action is genetically separable from that of MAX2 and KAI2. While hy5 mutants have weak hypocotyl elongation responses to karrikins and the artificial strigolactone GR24, they have normal transcriptional responses, suggesting that HY5 is not involved in perception or action of karrikins or strigolactones. Furthermore, we show that overexpression of KAI2 is sufficient to enhance responses to both karrikins and GR24 in wild-type seedlings, and that KAI2 overexpression partially suppresses the hy5 long hypocotyl phenotype. These results suggest that KAI2 and MAX2 define a regulatory pathway that largely operates independently of HY5 to mediate seedling responses to abiotic signals such as smoke and light.
Strigolactones are a recently discovered class of plant hormone involved in branching, leaf senescence, root development, and plant-microbe interactions [1-6]. They are carotenoid-derived lactones, synthesized in the roots and transported acropetally to modulate axillary bud outgrowth (i.e., branching) [1, 2]. However, a receptor for strigolactones has not been identified. We have identified the DAD2 gene from petunia, an ortholog of the rice and Arabidopsis D14 genes, and present evidence for its roles in strigolactone perception and signaling. DAD2 acts in the strigolactone pathway, and the dad2 mutant is insensitive to the strigolactone analog GR24. The crystal structure of DAD2 reveals an alpha/beta hydrolase fold containing a canonical catalytic triad with a large internal cavity capable of accommodating strigolactones. In the presence of GR24 DAD2 interacts with PhMAX2A, a central component of strigolactone signaling, in a GR24 concentration-dependent manner. DAD2 can hydrolyze GR24, with mutants of the catalytic triad abolishing both this activity and the ability of DAD2 to interact with PhMAX2A. The hydrolysis products can neither stimulate the protein-protein interaction nor modulate branching. These observations suggest that DAD2 acts to bind the mobile strigolactone signal and then interacts with PhMAX2A during catalysis to initiate an SCF-mediated signal transduction pathway.
Karrikins are butenolides derived from burnt vegetation that stimulate seed germination and enhance seedling responses to light. Strigolactones are endogenous butenolide hormones that regulate shoot and root architecture, and stimulate the branching of arbuscular mycorrhizal fungi. Thus, karrikins and strigolactones are structurally similar but physiologically distinct plant growth regulators. In Arabidopsis thaliana, responses to both classes of butenolides require the F-box protein MAX2, but it remains unclear how discrete responses to karrikins and strigolactones are achieved. In rice, the DWARF14 protein is required for strigolactone-dependent inhibition of shoot branching. Here, we show that the Arabidopsis DWARF14 orthologue, AtD14, is also necessary for normal strigolactone responses in seedlings and adult plants. However, the AtD14 paralogue KARRIKIN INSENSITIVE 2 (KAI2) is specifically required for responses to karrikins, and not to strigolactones. Phylogenetic analysis indicates that KAI2 is ancestral and that AtD14 functional specialisation has evolved subsequently. Atd14 and kai2 mutants exhibit distinct subsets of max2 phenotypes, and expression patterns of AtD14 and KAI2 are consistent with the capacity to respond to either strigolactones or karrikins at different stages of plant development. We propose that AtD14 and KAI2 define a class of proteins that permit the separate regulation of karrikin and strigolactone signalling by MAX2. Our results support the existence of an endogenous, butenolide-based signalling mechanism that is distinct from the strigolactone pathway, providing a molecular basis for the adaptive response of plants to smoke.
Recent studies using highly branched mutants of pea, Arabidopsis and rice have demonstrated that strigolactones, a group of terpenoid lactones, act as a new hormone class, or its biosynthetic precursors, in inhibiting shoot branching. Here, we provide evidence that DWARF14 (D14) inhibits rice tillering and may act as a new compo-nent of the strigolactone-dependent branching inhibition pathway. The d14 mutant exhibits increased shoot branch-ing with reduced plant height like the previously characterized strigolactone-deficient and -insensitive mutants d10 and d3, respectively. The d10-1 d14-1 double mutant is phenotypically indistinguishable from the d10-1 and d14-1 single mutants, consistent with the idea that D10 and D14 function in the same pathway. However, unlike with d10, the d14 branching phenotype could not be rescued by exogenous strigolactones. In addition, the d14 mutant contained a higher level of 2'-epi-5-deoxystrigol than the wild type. Positional cloning revealed that D14 encodes a protein of the alpha/beta-fold hydrolase superfamily, some members of which play a role in metabolism or signaling of plant hormones. We propose that D14 functions downstream of strigolactone synthesis, as a component of hormone signaling or as an enzyme that participates in the conversion of strigolactones to the bioactive form.
Rice architecture is an important agronomic trait that affects grain yield. We characterized a tillering dwarf mutant d88 derived from Oryza sativa ssp. japonica cultivar Lansheng treated with EMS. The mutant had excessive shorter tillers and smaller panicles and seeds compared to the wild-type. A reduction in number and size of parenchyma cells around stem marrow cavity as well as a delay in the elongation of parenchyma cells caused slender tillers and dwarfism in the d88 mutant. The D88 gene was isolated via map-based cloning and identified to encode a putative esterase. The gene was expressed in most rice organs, with especially high levels in the vascular tissues. The mutant carried a nucleotide substitution in the first exon of the gene that led to the substitution of arginine for glycine, which presumably disrupted the functionally conserved N-myristoylation domain of the protein. The function of the gene was confirmed by complementation test and antisense analysis. D88, thus, represents a new category of genes that regulates cell growth and organ development and consequently plant architecture. The potential relationship between the tiller formation associated genes and D88 is discussed and future identification of the substrate for D88 may lead to the characterization of new pathways regulating plant development.
        
Title: Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice Liu W, Wu C, Fu Y, Hu G, Si H, Zhu L, Luan W, He Z, Sun Z Ref: Planta, 230:649, 2009 : PubMed
Tiller number is highly regulated by controlling the formation of tiller bud and its subsequent outgrowth in response to endogenous and environmental signals. Here, we identified a rice mutant htd2 from one of the 15,000 transgenic rice lines, which is characterized by a high tillering and dwarf phenotype. Phenotypic analysis of the mutant showed that the mutation did not affect formation of tiller bud, but promoted the subsequent outgrowth of tiller bud. To isolate the htd2 gene, a map-based cloning strategy was employed and 17 new insertions-deletions (InDels) markers were developed. A high-resolution physical map of the chromosomal region around the htd2 gene was made using the F(2) and F(3) population. Finally, the gene was mapped in 12.8 kb region between marker HT41 and marker HT52 within the BAC clone OSJNBa0009J13. Cloning and sequencing of the target region from the mutant showed that the T-DNA insertion caused a 463 bp deletion between the promoter and first exon of an esterase/lipase/thioesterase family gene in the 12.8 kb region. Furthermore, transgenic rice with reduced expression level of the gene exhibited an enhanced tillering and dwarf phenotype. Accordingly, the esterase/lipase/thioesterase family gene (TIGR locus Os03g10620) was identified as the HTD2 gene. HTD2 transcripts were expressed mainly in leaf. Loss of function of HTD2 resulted in a significantly increased expression of HTD1, D10 and D3, which were involved in the strigolactone biosynthetic pathway. The results suggest that the HTD2 gene could negatively regulate tiller bud outgrowth by the strigolactone pathway.
        
Title: Crystal structures of RsbQ, a stress-response regulator in Bacillus subtilis Kaneko T, Tanaka N, Kumasaka T Ref: Protein Science, 14:558, 2005 : PubMed
Growth-limiting stresses in bacteria induce the general stress response to protect the cells against future stresses. Energy stress caused by starvation conditions in Bacillus subtilis is transmitted to the sigma(B) transcription factor by stress-response regulators. RsbP, a positive regulator, is a phosphatase containing a PAS (Per-ARNT-Sim) domain and requires catalytic function of a putative alpha/beta hydrolase, RsbQ, to be activated. These two proteins have been found to interact with each other. We determined the crystal structures of RsbQ in native and inhibitor-bound forms to investigate why RsbP requires RsbQ. These structures confirm that RsbQ belongs to the alpha/beta hydrolase superfamily. Since the catalytic triad is buried inside the molecule due to the closed conformation, the active site is constructed as a hydrophobic cavity that is nearly isolated from the solvent. This suggests that RsbQ has specificity for a hydrophobic small compound rather than a macromolecule such as RsbP. Moreover, structural comparison with other alpha/beta hydrolases demonstrates that a unique loop region of RsbQ is a likely candidate for the interaction site with RsbP, and the interaction might be responsible for product release by operating the hydrophobic gate equipped between the cavity and the solvent. Our results support the possibility that RsbQ provides a cofactor molecule for the mature functionality of RsbP.
        
Title: Catalytic function of an alpha/beta hydrolase is required for energy stress activation of the sigma(B) transcription factor in Bacillus subtilis Brody MS, Vijay K, Price CW Ref: Journal of Bacteriology, 183:6422, 2001 : PubMed
The general stress response of Bacillus subtilis is controlled by the sigma(B) transcription factor, which is activated in response to diverse energy and environmental stresses. These two classes of stress are transmitted by separate signaling pathways which converge on the direct regulators of sigma(B), the RsbV anti-anti-sigma factor and the RsbW anti-sigma factor. The energy signaling branch involves the RsbP phosphatase, which dephosphorylates RsbV in order to trigger the general stress response. The rsbP structural gene lies downstream from rsbQ in a two-gene operon. Here we identify the RsbQ protein as a required positive regulator inferred to act in concert with the RsbP phosphatase. RsbQ bound RsbP in the yeast two-hybrid system, and a large in-frame deletion in rsbQ had the same phenotype as a null allele of rsbP-an inability to activate sigma(B) in response to energy stress. Genetic complementation studies indicated that this phenotype was not due to a polar effect of the rsbQ alteration on rsbP. The predicted rsbQ product is a hydrolase or acyltransferase of the alpha/beta fold superfamily, members of which catalyze a wide variety of reactions. Notably, substitutions in the presumed catalytic triad of RsbQ also abolished the energy stress response but had no detectable effect on RsbQ structure, synthesis, or stability. We conclude that the catalytic activity of RsbQ is an essential constituent of the energy stress signaling pathway.