PF01083 Contains the Acetylxylan_esterase and the Cutinase families as does the cutinase like family in SCOP. This family corresponds to the Carbohydrate Esterase family CE5 in CAZy - Carbohydrate-Active enZYmes database (CE_5)
Acetylxylan esterase (AXEII; 207 amino acids) from Penicillium purpurogenum has substrate specificities toward acetate esters of d-xylopyranose residues in xylan and belongs to a new class of alpha/beta hydrolases. The crystal structure of AXEII has been determined by single isomorphous replacement and anomalous scattering, and refined at 0.90- and 1.10-A resolutions with data collected at 85 K and 295 K, respectively. The tertiary structure consists of a doubly wound alpha/beta sandwich, having a central six-stranded parallel beta-sheet flanked by two parallel alpha-helices on each side. The catalytic residues Ser(90), His(187), and Asp(175) are located at the C-terminal end of the sheet, an exposed region of the molecule. The serine and histidine side chains in the 295 K structure show the frequently observed conformations in which Ser(90) is trans and the hydroxyl group is in the plane of the imidazole ring of His(187). However, the structure at 85 K displays an additional conformation in which Ser(90) side-chain hydroxyl is away from the plane of the imidazole ring of His(187). The His(187) side chain forms a hydrogen bond with a sulfate ion and adopts an altered conformation. The only other known hydrolase that has a similar tertiary structure is Fusarium solani cutinase. The exposed nature of the catalytic triad suggests that AXEII is a pure esterase, i.e. an alpha/beta hydrolase with specificity for nonlipidic polar substrates.
        
Title: Three-dimensional structure of the catalytic core of acetylxylan esterase from Trichoderma reesei: insights into the deacetylation mechanism Hakulinen N, Tenkanen M, Rouvinen J Ref: J Struct Biol, 132:180, 2000 : PubMed
Acetylxylan esterase from Trichoderma reesei removes acetyl side groups from xylan. The crystal structure of the catalytic core of the enzyme was solved at 1.9 A resolution. The core has an alpha/beta/alpha sandwich fold, similar to that of homologous acetylxylan esterase from Penicillium purpurogenum and cutinase from Fusarium solani. All three enzymes belong to family 5 of the carbohydrate esterases and the superfamily of the alpha/beta hydrolase fold. Evidently, the enzymes have diverged from a common ancestor and they share the same catalytic mechanism. The catalytic machinery of acetylxylan esterase from T. reesei was studied by comparison with cutinase, the catalytic site of which is well known. Acetylxylan esterase is a pure serine esterase having a catalytic triad (Ser90, His187, and Asp175) and an oxyanion hole (Thr13 N, and Thr13 O gamma). Although the catalytic triad of acetylxylan esterase has been reported previously, there has been no mention of the oxyanion hole. A model for the binding of substrates is presented on the basis of the docking of xylose. Acetylxylan esterase from T. reesei is able to deacetylate both mono- and double-acetylated residues, but it is not able to remove acetyl groups located close to large side groups such as 4-O-methylglucuronic acid. If the xylopyranoside residue is double-acetylated, both acetyl groups are removed by the catalytic triad: first one acetyl group is removed and then the residue is reorientated so that the nucleophilic oxygen of serine can attack the second acetyl group.