Triglyceride lipases are lipases that hydrolyse ester linkages of triglycerides. These lipases are widely distributed in animals, plants and prokaryotes. This family was also called class 3 lipases as they are only distantly related to other lipase families. In some fungi DDHD domain Pfam PF02862 180 residues long containing four conserved residues that may form a metal binding site is associated with the Lipase_3. Bacterial enzymes (LipG Lee et al. 2006) belong to family XI of the classification of Arpigny and Jaeger 1999. The (phospho)lipase of F.solani has the highest microbial activity on galactolipids Jallouli et al. Feruloyl esterases are enzymes produced by micro-organisms to deconstruct plant cell walls by hydrolyzing phenolic groups involved in the cross-linking of arabinoxylan to other polymeric structures. The non-modular type-A feruloyl esterase from Aspergillus niger AnFaeA is similar to fungal lipases and different from other feruloyl esterases. Feruloyl esterases are distributed in different sub-classes type-A B C,D and E and fall respectively in the following families. Type-A in Lipase_3, Type-B in Esterase_phb (PHB depolymerase), Type-C in Tannase, Type-D in FaeC, Type-E in A85-Feruloyl-Esterase, Type-F in BD-FAE
Determining optimal conditions for the production of well diffracting crystals is a key step in every biocrystallography project. Here, a microfluidic device is described that enables the production of crystals by counter-diffusion and their direct on-chip analysis by serial crystallography at room temperature. Nine 'non-model' and diverse biomacromolecules, including seven soluble proteins, a membrane protein and an RNA duplex, were crystallized and treated on-chip with a variety of standard techniques including micro-seeding, crystal soaking with ligands and crystal detection by fluorescence. Furthermore, the crystal structures of four proteins and an RNA were determined based on serial data collected on four synchrotron beamlines, demonstrating the general applicability of this multipurpose chip concept.
The purified (phospho)lipase of Fusarium solani (FSL), was known to be active on both triglycerides and phospholipids. This study aimed at assessing the potential of this enzyme in hydrolyzing galactolipids. FSL was found to hydrolyze at high rates of synthetic medium chains monogalactosyldiacylglycerol (4658+/-146U/mg on DiC8-MGDG) and digalactosyldiacylglycerol (3785+/-83U/mg on DiC8-DGDG) and natural long chain monogalactosyldiacylglycerol extracted from leek leaves (991+/-85U/mg). It is the microbial enzyme with the highest activity on galactolipids identified so far with a level of activity comparable to that of pancreatic lipase-related protein 2. FSL maximum activity on galactolipids was measured at pH8. The analysis of the hydrolysis product of natural MGDG from leek showed that FSL hydrolyzes preferentially the ester bond at the sn-1 position of galactolipids. To investigate the structure-activity relationships of FSL, a 3D model of this enzyme was built. In silico docking of medium chains MGDG and DGDG and phospholipid in the active site of FSL reveals structural solutions which are in concordance with in vitro tests.
Lipases from filamentous fungi have been studied extensively over many years. They exhibit properties attractive for industrial applications, e.g. in laundry detergents, tanning and paper industries and stereospecific organic synthesis. Enzymes from the fungi Rhizomucor miehei and Geotrichum candidum have been among the first neutral lipases to be characterized structurally by X-ray diffraction methods. In this paper we report a preliminary account of crystallographic studies of three other fungal lipases homologous to that from R. miehei and obtained from Humicola lanuginosa, Penicillium camembertii and Rhizopus delemar. These newly characterized structures have important implications for our understanding of structure-function relationships in lipases in general and the molecular basis of interfacial activation.
Background: The endogenous cannabinoid system modulates inflammatory signaling in a variety of pathological states, including traumatic brain injury (TBI). The selective expression of diacylglycerol lipase-beta (DAGL-beta), the 2-arachidonylglycerol biosynthetic enzyme, on resident immune cells of the brain (microglia) and the role of this pathway in neuroinflammation, suggest that this enzyme may contribute to TBI-induced neuroinflammation. Accordingly, we tested whether DAGL-beta(-/-) mice would show a protective phenotype from the deleterious consequences of TBI on cognitive and neurological motor functions. Materials and Methods: DAGL-beta(-/-) and -beta(+/+) mice were subjected to the lateral fluid percussion model of TBI and assessed for learning and memory in the Morris water maze (MWM) Fixed Platform (reference memory) and Reversal (cognitive flexibility) tasks, as well as in a cued MWM task to infer potential sensorimotor/motivational deficits. In addition, subjects were assessed for motor behavior (Rotarod and the Neurological Severity Score assays) and in the light/dark box and the elevated plus maze to infer whether these manipulations affected anxiety-like behavior. Finally, we also examined whether brain injury disrupts the ceramide/sphingolipid lipid signaling system and if DAGL-beta deletion offers protection. Results: TBI disrupted all measures of neurological motor function and reduced body weight, but did not affect body temperature or performance in common assays used to infer anxiety. TBI also impaired performance in MWM Fixed Platform and Reversal tasks, but did not affect cued MWM performance. Although no differences were found between DAGL-beta(-/-) and -beta(+/+) mice in any of these measures, male DAGL-beta(-/-) mice displayed an unexpected survival-protective phenotype, which persisted at increased injury severities. In contrast, TBI did not elicit mortality in female mice regardless of genotype. TBI also produced significant changes in sphingolipid profiles (a family of lipids, members of which have been linked to both apoptotic and antiapoptotic pathways), in which DAGL-beta deletion modestly altered levels of select species. Conclusions: These findings indicate that although DAGL-beta does not play a necessary role in TBI-induced cognitive and neurological function, it appears to contribute to the increased vulnerability of male mice to TBI-induced mortality, whereas female mice show high survival rates irrespective of DAGL-beta expression.
Determining optimal conditions for the production of well diffracting crystals is a key step in every biocrystallography project. Here, a microfluidic device is described that enables the production of crystals by counter-diffusion and their direct on-chip analysis by serial crystallography at room temperature. Nine 'non-model' and diverse biomacromolecules, including seven soluble proteins, a membrane protein and an RNA duplex, were crystallized and treated on-chip with a variety of standard techniques including micro-seeding, crystal soaking with ligands and crystal detection by fluorescence. Furthermore, the crystal structures of four proteins and an RNA were determined based on serial data collected on four synchrotron beamlines, demonstrating the general applicability of this multipurpose chip concept.
Diacylglycerol lipases (DAGLalpha and DAGLbeta) convert diacylglycerol to the endocannabinoid 2-arachidonoylglycerol. Our understanding of DAGL function has been hindered by a lack of chemical probes that can perturb these enzymes in vivo. Here, we report a set of centrally active DAGL inhibitors and a structurally related control probe and their use, in combination with chemical proteomics and lipidomics, to determine the impact of acute DAGL blockade on brain lipid networks in mice. Within 2 h, DAGL inhibition produced a striking reorganization of bioactive lipids, including elevations in DAGs and reductions in endocannabinoids and eicosanoids. We also found that DAGLalpha is a short half-life protein, and the inactivation of DAGLs disrupts cannabinoid receptor-dependent synaptic plasticity and impairs neuroinflammatory responses, including lipopolysaccharide-induced anapyrexia. These findings illuminate the highly interconnected and dynamic nature of lipid signaling pathways in the brain and the central role that DAGL enzymes play in regulating this network.
The purified (phospho)lipase of Fusarium solani (FSL), was known to be active on both triglycerides and phospholipids. This study aimed at assessing the potential of this enzyme in hydrolyzing galactolipids. FSL was found to hydrolyze at high rates of synthetic medium chains monogalactosyldiacylglycerol (4658+/-146U/mg on DiC8-MGDG) and digalactosyldiacylglycerol (3785+/-83U/mg on DiC8-DGDG) and natural long chain monogalactosyldiacylglycerol extracted from leek leaves (991+/-85U/mg). It is the microbial enzyme with the highest activity on galactolipids identified so far with a level of activity comparable to that of pancreatic lipase-related protein 2. FSL maximum activity on galactolipids was measured at pH8. The analysis of the hydrolysis product of natural MGDG from leek showed that FSL hydrolyzes preferentially the ester bond at the sn-1 position of galactolipids. To investigate the structure-activity relationships of FSL, a 3D model of this enzyme was built. In silico docking of medium chains MGDG and DGDG and phospholipid in the active site of FSL reveals structural solutions which are in concordance with in vitro tests.
        
Title: Crystal structure of a secreted lipase from Gibberella zeae reveals a novel double-lock mechanism Lou Z, Li M, Sun Y, Liu Y, Liu Z, Wu W, Rao Z Ref: Protein Cell, 1:760, 2010 : PubMed
Fusarium graminearum (sexual stage: Gibberella zeae) is the causative agent of Fusarium Head Blight (FHB), which is one of the most destructive plant disease of cereals, accounting for high grain yield losses, especially for wheat and maize. Like other fungal pathogens, several extracellular enzymes secreted by G. zeae are known to be involved in host infection. Among these secreted lipases, G. zeae lipase (GZEL), which is encoded by the FGL1 gene, was demonstrated to be crucial to G. zeae pathogenicity. However, the precise mechanism of GZEL remains unclear due to a lack of detailed structural information. In this study, we report the crystal structure of GZEL at the atomic level. The structure of GZEL displays distinct structural differences compared to reported homologues and indicates a unique "double lock" enzymatic mechanism. To gain insight into substrate/inhibitor recognition, we proposed a model of GZEL in complex with substrate and the lipase inhibitor ebelactone B (based on the reported structures of GZEL homologues), which defines possible substrate binding sites within the catalytic cleft and suggests an "anti sn-l" binding mode. These results pave the way to elucidating the mechanism of GZEL and thus provide clues for the design of anti-FHB inhibitors.
        
Title: Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation Qian Z, Horton JR, Cheng X, Lutz S Ref: Journal of Molecular Biology, 393:191, 2009 : PubMed
Circular permutation of Candida antarctica lipase B yields several enzyme variants with substantially increased catalytic activity. To better understand the structural and functional consequences of protein termini reorganization, we have applied protein engineering and x-ray crystallography to cp283, one of the most active hydrolase variants. Our initial investigation has focused on the role of an extended surface loop, created by linking the native N- and C-termini, on protein integrity. Incremental truncation of the loop partially compensates for observed losses in secondary structure and the permutants' temperature of unfolding. Unexpectedly, the improvements are accompanied by quaternary-structure changes from monomer to dimer. The crystal structures of one truncated variant (cp283 Delta 7) in the apo-form determined at 1.49 A resolution and with a bound phosphonate inhibitor at 1.69 A resolution confirmed the formation of a homodimer by swapping of the enzyme's 35-residue N-terminal region. Separately, the new protein termini at amino acid positions 282/283 convert the narrow access tunnel to the catalytic triad into a broad crevice for accelerated substrate entry and product exit while preserving the native active-site topology for optimal catalytic turnover.
The M37 lipase from Photobacterium lipolyticum shows an extremely low activation energy and strong activity at low temperatures, with optimum activity seen at 298 K and more than 75% of the optimum activity retained down to 278 K. Though the M37 lipase is most closely related to the filamentous fungal lipase, Rhizomucor miehei lipase (RML) at the primary structure level, their activity characteristics are completely different. In an effort to identify structural components of cold adaptation in lipases, we determined the crystal structure of the M37 lipase at 2.2 A resolution and compared it to that of nonadapted RML. Structural analysis revealed that M37 lipase adopted a folding pattern similar to that observed for other lipase structures. However, comparison with RML revealed that the region beneath the lid of the M37 lipase included a significant and unique cavity that would be occupied by a lid helix upon substrate binding. In addition, the oxyanion hole was much wider in M37 lipase than RML. We propose that these distinct structural characteristics of M37 lipase may facilitate the lateral movement of the helical lid and subsequent substrate hydrolysis, which might explain its low activation energy and high activity at low temperatures.
        
Title: Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases Lee MH, Lee CH, Oh TK, Song JK, Yoon JH Ref: Applied Environmental Microbiology, 72:7406, 2006 : PubMed
We cloned lipG, which encoded a lipolytic enzyme, from a Korean tidal flat metagenomic library. LipG was related to six putative lipases previously identified only in bacterial genome sequences. These enzymes comprise a new family. We partially characterized LipG, providing the first experimental data for a member of this family.
        
Title: Feruloyl esterase: a key enzyme in biomass degradation Wong DWS Ref: Appl Biochem Biotechnol, 133:87, 2006 : PubMed
Feruloyl esterase forms a part of the enzyme complex that acts collectively and synergistically to completely hydrolyze xylan to its monomers. The enzyme has found potential uses in a wide variety of applications of interest to the agrifood and pharmaceutical industries. This review describes the enzymology of feruloyl esterases involved in xylan degradation. The occurrence of feruloyl esterases in various microorganisms and their physiochemical properties are presented. The nature of the enzyme substrates and products, the role of synergistic interactions with xylanases and other accessory enzymes, as well as the sequence-structure relating to the reaction mechanism are emphasized.
        
Title: The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family Hermoso JA, Sanz-Aparicio J, Molina R, Juge N, Gonzalez R, Faulds CB Ref: Journal of Molecular Biology, 338:495, 2004 : PubMed
As a component of the array of enzymes produced by micro-organisms to deconstruct plant cell walls, feruloyl esterases hydrolyze phenolic groups involved in the cross-linking of arabinoxylan to other polymeric structures. This is important for opening the cell wall structure, making material more accessible to glycosyl hydrolases. Here, we describe the first crystal structure of the non-modular type-A feruloyl esterase from Aspergillus niger (AnFaeA) solved at 2.5A resolution. AnFaeA displays an alpha/beta hydrolase fold similar to that found in fungal lipases and different from that reported for other feruloyl esterases. Crystallographic and site-directed mutagenesis studies allow us to identify the catalytic triad (Ser133-His247-Asp194) that forms the catalytic machinery of this enzyme. The active-site cavity is confined by a lid (residues 68-80), on the analogy of lipases, and by a loop (residues 226-244) that confers plasticity to the substrate-binding site. The lid presents a high ratio of polar residues, which in addition to a unique N-glycosylation site stabilises the lid in an open conformation, conferring the esterase character to this enzyme. A putative model for bound 5,5'-diferulic acid-linked arabinoxylan has been built, pointing to the more relevant residues involved in substrate recognition. Comparison with structurally related lipases reveals that subtle amino acid and conformational changes within a highly conserved protein fold may produce protein variants endowed with new enzymatic properties, while comparison with functionally related proteins points to a functional convergence after evolutionary divergence within the feruloyl esterases family.
        
Title: Structure of a feruloyl esterase from Aspergillus niger McAuley KE, Svendsen A, Patkar SA, Wilson KS Ref: Acta Crystallographica D Biol Crystallogr, 60:878, 2004 : PubMed
The crystallographic structure of feruloyl esterase from Aspergillus niger has been determined to a resolution of 1.5 A by molecular replacement. The protein has an alpha/beta-hydrolase structure with a Ser-His-Asp catalytic triad; the overall fold of the protein is very similar to that of the fungal lipases. The structure of the enzyme-product complex was determined to a resolution of 1.08 A and reveals dual conformations for the serine and histidine residues at the active site.
We report the cloning and characterization of a gene encoding a ferulic acid esterase, faeA, from Aspergillus niger and Aspergillus tubingensis. The A. niger and A. tubingensis genes have a high degree of sequence identity and contain one conserved intron. The gene product, FAEA, was overexpressed in wild-type A. tubingensis and a protease-deficient A. niger mutant. Overexpression of both genes in wild-type A. tubingensis and an A. niger protease-deficient mutant showed that the A. tubingensis gene product is more sensitive to degradation than the equivalent gene product from A. niger. FAEA from A. niger was identical to A. niger FAE-III (C. B. Faulds and G. Williamson, Microbiology 140:779-787, 1994), as assessed by molecular mass, pH and temperature optima, pI, N-terminal sequence, and activity on methyl ferulate. The faeA gene was induced by growth on wheat arabinoxylan and sugar beet pectin, and its gene product (FAEA) released ferulic acid from wheat arabinoxylan. The rate of release was enhanced by the presence of a xylanase. FAEA also hydrolyzed smaller amounts of ferulic acid from sugar beet pectin, but the rate was hardly affected by addition of an endo-pectin lyase.
Lipases from filamentous fungi have been studied extensively over many years. They exhibit properties attractive for industrial applications, e.g. in laundry detergents, tanning and paper industries and stereospecific organic synthesis. Enzymes from the fungi Rhizomucor miehei and Geotrichum candidum have been among the first neutral lipases to be characterized structurally by X-ray diffraction methods. In this paper we report a preliminary account of crystallographic studies of three other fungal lipases homologous to that from R. miehei and obtained from Humicola lanuginosa, Penicillium camembertii and Rhizopus delemar. These newly characterized structures have important implications for our understanding of structure-function relationships in lipases in general and the molecular basis of interfacial activation.
The stability of globular proteins arises largely from the burial of non-polar amino acids in their interior. These residues are efficiently packed to eliminate energetically unfavorable cavities. Contrary to these observations, high resolution X-ray crystallographic analyses of four homologous lipases from filamentous fungi reveal an alpha/beta fold which contains a buried conserved constellation of charged and polar side chains with associated cavities containing ordered water molecules. It is possible that this structural arrangement plays an important role in interfacial catalysis.
        
Title: Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar Derewenda U, Swenson L, Wei Y, Green R, Kobos PM, Joerger R, Haas MJ, Derewenda ZS Ref: J Lipid Res, 35:524, 1994 : PubMed
Considerable controversy exists regarding the exact nature of the molecular mechanism of interfacial activation, a process by which most lipases achieve maximum catalytic activity upon adsorption to an oil water interface. X-ray crystallographic studies show that lipases contain buried active centers and that displacements of entire secondary structure elements, or "lids," take place when the enzymes assume active conformations [Derewenda, U., A. M. Brzozowski, D. M. Lawson, and Z. S. Derewenda. 1992. Biochemistry: 31: 1532-1541; van Tilbeurgh, H., M-P. Egloff, C. Martinez, N. Rugani, R. Verger, and C. Cambillau. 1993. Nature: 362: 814-820; Grochulski, P., L. Yunge, J. D. Schrag, F. Bouthillier, P. Smith, D. Harrison, B. Rubin, and M. Cygler. 1993. J. Biol. Chem. 268: 12843-12847]. A simple two-state model inferred from these results implies that the "closed" conformation is stable in an aqueous medium, rendering the active centers inaccessible to water soluble substrates. We now report that in crystals of the Humicola lanuginosa lipase the "lid" is significantly disordered irrespective of the ionic strength of the medium, while in a related enzyme from Rhizopus delemar, crystallized in the presence of a detergent, the two molecules that form the asymmetric unit show different "lid" conformations. These new results call into question the simplicity of the "enzyme theory" of interfacial activation.
        
Title: The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica Uppenberg J, Hansen MT, Patkar S, Jones TA Ref: Structure, 2:293, 1994 : PubMed
BACKGROUND: Lipases constitute a family of enzymes that hydrolyze triglycerides. They occur in many organisms and display a wide variety of substrate specificities. In recent years, much progress has been made towards explaining the mechanism of these enzymes and their ability to hydrolyze their substrates at an oil-water interface. RESULTS: We have determined the DNA and amino acid sequences for lipase B from the yeast Candida antarctica. The primary sequence has no significant homology to any other known lipase and deviates from the consensus sequence around the active site serine that is found in other lipases. We have determined the crystal structure of this enzyme using multiple isomorphous replacement methods for two crystal forms. Models for the orthorhombic and monoclinic crystal forms of the enzyme have been refined to 1.55 A and 2.1 A resolution, respectively. Lipase B is an alpha/beta type protein that has many features in common with previously determined lipase structures and other related enzymes. In the monoclinic crystal form, lipid-like molecules, most likely beta-octyl glucoside, can be seen close to the active site. The behaviour of these lipid molecules in the crystal structure has been studied at different pH values. CONCLUSION: The structure of Candida antarctica lipase B shows that the enzyme has a Ser-His-Asp catalytic triad in its active site. The structure appears to be in an 'open' conformation with a rather restricted entrance to the active site. We believe that this accounts for the substrate specificity and high degree of stereospecificity of this lipase.
True lipases attach triacylglycerols and act at an oil-water interface; they constitute a ubiquitous group of enzymes catalysing a wide variety of reactions, many with industrial potential. But so far the three-dimensional structure has not been reported for any lipase. Here we report the X-ray structure of the Mucor miehei triglyceride lipase and describe the atomic model obtained at 3.1 A resolution and refined to 1.9 A resolution. It reveals a Ser..His..Asp trypsin-like catalytic triad with an active serine buried under a short helical fragment of a long surface loop.
Crystal structure of the complex of three phase partition treated lipase from Thermomyces lanuginosa with Lauric acid and P-nitrobenzaldehyde (PNB) at 2.1 resolution