(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Alphaproteobacteria: NE > Sphingomonadales: NE > Sphingomonadaceae: NE > Sphingomonas: NE > Sphingomonas sp. KA1: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSTFILIHGAWHGRWCWDELIPLLEAGKHKVVAIDLPGSGDDPTPPGDVS LAAYCDAVVHTVCSQGEPVVLVGHSMGGLVITQVAELIPERVAALVYVAA FLPDNGQSLKQLADQGAPLSLEYSADGLTAIIPPQSASDTLFADVHLDIC KSAVAKLRPQALAPLGTPVETTPERFGSVPRHYVECIRDRAIPIEAQRKM AAANTCVSIQSLETGHSPFLSAPAQLANALLNTTS
We determined the complete 254,797-bp nucleotide sequence of the plasmid pCAR3, a carbazole-degradative plasmid from Sphingomonas sp. strain KA1. A region of about 65 kb involved in replication and conjugative transfer showed similarity to a region of plasmid pNL1 isolated from the aromatic-degrading Novosphingobium aromaticivorans strain F199. The presence of many insertion sequences, transposons, repeat sequences, and their remnants suggest plasticity of this plasmid in genetic structure. Although pCAR3 is thought to carry clustered genes for conjugative transfer, a filter-mating assay between KA1 and a pCAR3-cured strain (KA1W) was unsuccessful, indicating that pCAR3 might be deficient in conjugative transfer. Several degradative genes were found on pCAR3, including two kinds of carbazole-degradative gene clusters (car-I and car-II), and genes for electron transfer components of initial oxygenase for carbazole (fdxI, fdrI, and fdrII). Putative genes were identified for the degradation of anthranilate (and), catechol (cat), 2-hydroxypenta-2,4-dienoate (carDFE), dibenzofuran/fluorene (dbf/fln), protocatechuate (lig), and phthalate (oph). It appears that pCAR3 may carry clustered genes (car-I, car-II, fdxI, fdrI, fdrII, and, and cat) for the degradation of carbazole into tricarboxylic acid cycle intermediates; KA1W completely lost the ability to grow on carbazole, and the carbazole-degradative genes listed above were all expressed when KA1 was grown on carbazole. Reverse transcription-PCR analysis also revealed that the transcription of car-I, car-II, and cat genes was induced by carbazole or its metabolic intermediate. Southern hybridization analyses with probes prepared from car-I, car-II, repA, parA, traI, and traD genes indicated that several Sphingomonas carbazole degraders have DNA regions similar to parts of pCAR3.
Southern hybridization analysis of the genomes from the newly-isolated 10 carbazole (CAR)-utilizing bacteria revealed that 8 of the isolates carried gene clusters homologous to the CAR-catabolic car operon of Pseudomonas resinovorans strain CA10. Sequencing analysis showed that two car operons and the neighboring regions of Pseudomonas sp. strain K23 are nearly identical to that of strain CA10. In contrast to strains CA10 and K23, carEF genes did not exist downstream of the car gene cluster of Janthinobacterium sp. strain J3. In the car gene clusters, strains CA10, K23 and J3 have Rieske-type ferredoxin as a component of carbazole dioxygenase, although Sphingomonas sp. strain KA1 possesses a putidaredoxin-type ferredoxin. We confirmed that this putidaredoxin-type ferredoxin CarAc can function as an electron mediator to CarAa of strain KA1. In the upstream regions of the carJ3 and carKA1 gene clusters, ORFs whose deduced amino acid sequences showed homology to GntR-family transcriptional regulators were identified.
        
Title: Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil Habe H, Ashikawa Y, Saiki Y, Yoshida T, Nojiri H, Omori T Ref: FEMS Microbiology Letters, 211:43, 2002 : PubMed
Hybridization analysis showed that a newly isolated carbazole (CAR)-degrading bacterium Sphingomonas sp. strain KA1 did not possess the gene encoding the terminal oxygenase component (carAa) of CAR 1,9a-dioxygenase at high homology (more than 90% identity) to that of another CAR-degrader, Pseudomonas resinovorans strain CA10. However, PCR experiments using the primers for amplifying the internal fragment of the carAa gene (810 bp for strain CA10) showed that a PCR product of unexpected size (1100 bp) was amplified. Sequence analysis revealed that this DNA region contained the portion of two possible ORFs, which showed moderate homology to CarAa and CarBa from strain CA10 (61% and 40% identities at the amino acid level, respectively). Inoculation of strain KA1 into dioxin-contaminated model soil resulted in 96% and 70% degradation of 2-mono- and 2,3-dichlorinated dibenzo-p-dioxin, respectively, after 7-day incubation.
We determined the complete 254,797-bp nucleotide sequence of the plasmid pCAR3, a carbazole-degradative plasmid from Sphingomonas sp. strain KA1. A region of about 65 kb involved in replication and conjugative transfer showed similarity to a region of plasmid pNL1 isolated from the aromatic-degrading Novosphingobium aromaticivorans strain F199. The presence of many insertion sequences, transposons, repeat sequences, and their remnants suggest plasticity of this plasmid in genetic structure. Although pCAR3 is thought to carry clustered genes for conjugative transfer, a filter-mating assay between KA1 and a pCAR3-cured strain (KA1W) was unsuccessful, indicating that pCAR3 might be deficient in conjugative transfer. Several degradative genes were found on pCAR3, including two kinds of carbazole-degradative gene clusters (car-I and car-II), and genes for electron transfer components of initial oxygenase for carbazole (fdxI, fdrI, and fdrII). Putative genes were identified for the degradation of anthranilate (and), catechol (cat), 2-hydroxypenta-2,4-dienoate (carDFE), dibenzofuran/fluorene (dbf/fln), protocatechuate (lig), and phthalate (oph). It appears that pCAR3 may carry clustered genes (car-I, car-II, fdxI, fdrI, fdrII, and, and cat) for the degradation of carbazole into tricarboxylic acid cycle intermediates; KA1W completely lost the ability to grow on carbazole, and the carbazole-degradative genes listed above were all expressed when KA1 was grown on carbazole. Reverse transcription-PCR analysis also revealed that the transcription of car-I, car-II, and cat genes was induced by carbazole or its metabolic intermediate. Southern hybridization analyses with probes prepared from car-I, car-II, repA, parA, traI, and traD genes indicated that several Sphingomonas carbazole degraders have DNA regions similar to parts of pCAR3.
The carbazole degradative car-I gene cluster (carAaIBaIBbICIAcI) of Sphingomonas sp. strain KA1 is located on the 254-kb circular plasmid pCAR3. Carbazole conversion to anthranilate is catalyzed by carbazole 1,9a-dioxygenase (CARDO; CarAaIAcI), meta-cleavage enzyme (CarBaIBbI), and hydrolase (CarCI). CARDO is a three-component dioxygenase, and CarAaI and CarAcI are its terminal oxygenase and ferredoxin components. The car-I gene cluster lacks the gene encoding the ferredoxin reductase component of CARDO. In the present study, based on the draft sequence of pCAR3, we found multiple carbazole degradation genes dispersed in four loci on pCAR3, including a second copy of the car gene cluster (carAaIIBaIIBbIICIIAcII) and the ferredoxin/reductase genes fdxI-fdrI and fdrII. Biotransformation experiments showed that FdrI (or FdrII) could drive the electron transfer chain from NAD(P)H to CarAaI (or CarAaII) with the aid of ferredoxin (CarAcI, CarAcII, or FdxI). Because this electron transfer chain showed phylogenetic relatedness to that consisting of putidaredoxin and putidaredoxin reductase of the P450cam monooxygenase system of Pseudomonas putida, CARDO systems of KA1 can be classified in the class IIA Rieske non-heme iron oxygenase system. Reverse transcription-PCR (RT-PCR) and quantitative RT-PCR analyses revealed that two car gene clusters constituted operons, and their expression was induced when KA1 was exposed to carbazole, although the fdxI-fdrI and fdrII genes were expressed constitutively. Both terminal oxygenases of KA1 showed roughly the same substrate specificity as that from the well-characterized carbazole degrader Pseudomonas resinovorans CA10, although slight differences were observed.
        
Title: Diversity of carbazole-degrading bacteria having the car gene cluster: isolation of a novel gram-positive carbazole-degrading bacterium Inoue K, Habe H, Yamane H, Omori T, Nojiri H Ref: FEMS Microbiology Letters, 245:145, 2005 : PubMed
Twenty-seven carbazole-utilizing bacterial strains were isolated from environmental samples, and were classified into 14 groups by amplified ribosomal DNA restriction analysis. Southern hybridization analyses showed that 3 and 17 isolates possessed the car gene homologs of Pseudomonas resinovorans CA10 and Sphingomonas sp. strain KA1, respectively. Of the 17 isolates, 2 isolates also have the homolog of the carAa gene of Sphingomonas sp. strain CB3. While the genome of one isolate, a Gram-positive Nocardioides sp. strain IC177, showed no hybridization to any car gene probes, PCR and sequence analyses indicated that strain IC177 had tandemly linked carAa and carC gene homologs whose deduced amino acid sequences showed 51% and 36% identities with those of strain KA1.
Southern hybridization analysis of the genomes from the newly-isolated 10 carbazole (CAR)-utilizing bacteria revealed that 8 of the isolates carried gene clusters homologous to the CAR-catabolic car operon of Pseudomonas resinovorans strain CA10. Sequencing analysis showed that two car operons and the neighboring regions of Pseudomonas sp. strain K23 are nearly identical to that of strain CA10. In contrast to strains CA10 and K23, carEF genes did not exist downstream of the car gene cluster of Janthinobacterium sp. strain J3. In the car gene clusters, strains CA10, K23 and J3 have Rieske-type ferredoxin as a component of carbazole dioxygenase, although Sphingomonas sp. strain KA1 possesses a putidaredoxin-type ferredoxin. We confirmed that this putidaredoxin-type ferredoxin CarAc can function as an electron mediator to CarAa of strain KA1. In the upstream regions of the carJ3 and carKA1 gene clusters, ORFs whose deduced amino acid sequences showed homology to GntR-family transcriptional regulators were identified.
        
Title: Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil Habe H, Ashikawa Y, Saiki Y, Yoshida T, Nojiri H, Omori T Ref: FEMS Microbiology Letters, 211:43, 2002 : PubMed
Hybridization analysis showed that a newly isolated carbazole (CAR)-degrading bacterium Sphingomonas sp. strain KA1 did not possess the gene encoding the terminal oxygenase component (carAa) of CAR 1,9a-dioxygenase at high homology (more than 90% identity) to that of another CAR-degrader, Pseudomonas resinovorans strain CA10. However, PCR experiments using the primers for amplifying the internal fragment of the carAa gene (810 bp for strain CA10) showed that a PCR product of unexpected size (1100 bp) was amplified. Sequence analysis revealed that this DNA region contained the portion of two possible ORFs, which showed moderate homology to CarAa and CarBa from strain CA10 (61% and 40% identities at the amino acid level, respectively). Inoculation of strain KA1 into dioxin-contaminated model soil resulted in 96% and 70% degradation of 2-mono- and 2,3-dichlorinated dibenzo-p-dioxin, respectively, after 7-day incubation.