(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Betaproteobacteria: NE > Burkholderiales: NE > Burkholderiaceae: NE > Cupriavidus: NE > Cupriavidus necator: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Comamonas acidovorans: N, E.
Delftia acidovorans: N, E.
Delftia acidovorans SPH-1: N, E.
Delftia acidovorans CCUG 15835: N, E.
Delftia acidovorans CCUG 274B: N, E.
Pseudomonas chlororaphis subsp. chlororaphis: N, E.
Pseudomonas sp. P51: N, E.
Achromobacter xylosoxidans: N, E.
Achromobacter xylosoxidans C54: N, E.
Achromobacter xylosoxidans NH44784-1996: N, E.
Alcaligenes xylosoxydans xylosoxydans: N, E.
Achromobacter xylosoxidans NBRC 15126 = ATCC 27061: N, E.
Achromobacter xylosoxidans A8: N, E.
Pseudomonas aeruginosa: N, E.
Pseudomonas aeruginosa C3719: N, E.
Pseudomonas aeruginosa 2192: N, E.
Pseudomonas aeruginosa VRFPA04: N, E.
Pseudomonas aeruginosa VRFPA01: N, E.
Pseudomonas aeruginosa LESB58: N, E.
Pseudomonas aeruginosa UCBPP-PA14: N, E.
Pseudomonas aeruginosa PA7: N, E.
Pseudomonas aeruginosa 39016: N, E.
Pseudomonas aeruginosa BL12: N, E.
Pseudomonas aeruginosa PAO581: N, E.
Pseudomonas aeruginosa MPAO1/P2: N, E.
Pseudomonas aeruginosa ATCC 14886: N, E.
Pseudomonas aeruginosa BL01: N, E.
Pseudomonas aeruginosa ATCC 700888: N, E.
Pseudomonas aeruginosa ATCC 25324: N, E.
Pseudomonas aeruginosa BL16: N, E.
Pseudomonas aeruginosa BWH050: N, E.
Pseudomonas aeruginosa DHS01: N, E.
Pseudomonas aeruginosa BWHPSA005: N, E.
Pseudomonas aeruginosa BWHPSA003: N, E.
Pseudomonas aeruginosa PADK2_CF510: N, E.
Pseudomonas aeruginosa VRFPA05: N, E.
Pseudomonas aeruginosa BWHPSA028: N, E.
Pseudomonas aeruginosa M9A.1: N, E.
Pseudomonas aeruginosa PA21_ST175: N, E.
Pseudomonas aeruginosa BWHPSA046: N, E.
Pseudomonas aeruginosa UDL: N, E.
Pseudomonas aeruginosa BWHPSA027: N, E.
Pseudomonas aeruginosa 3574: N, E.
Pseudomonas aeruginosa CF127: N, E.
Pseudomonas aeruginosa PAO1-VE13: N, E.
Pseudomonas aeruginosa BWHPSA024: N, E.
Pseudomonas aeruginosa PA1: N, E.
Pseudomonas aeruginosa BWHPSA043: N, E.
Pseudomonas aeruginosa DK2: N, E.
Pseudomonas aeruginosa BL05: N, E.
Pseudomonas aeruginosa BWH035: N, E.
Pseudomonas aeruginosa VRFPA02: N, E.
Pseudomonas aeruginosa C51: N, E.
Pseudomonas aeruginosa S54485: N, E.
Pseudomonas aeruginosa BWHPSA001: N, E.
Pseudomonas aeruginosa BWHPSA019: N, E.
Pseudomonas aeruginosa BWHPSA002: N, E.
Pseudomonas aeruginosa BWHPSA038: N, E.
Pseudomonas aeruginosa BWH051: N, E.
Pseudomonas aeruginosa BWHPSA047: N, E.
Pseudomonas aeruginosa BWHPSA022: N, E.
Pseudomonas aeruginosa BL03: N, E.
Pseudomonas aeruginosa 3577: N, E.
Pseudomonas aeruginosa str. Stone 130: N, E.
Pseudomonas aeruginosa c7447m: N, E.
Pseudomonas aeruginosa BWHPSA044: N, E.
Pseudomonas aeruginosa C52: N, E.
Pseudomonas aeruginosa BL25: N, E.
Pseudomonas aeruginosa 18A: N, E.
Pseudomonas aeruginosa LESlike5: N, E.
Pseudomonas aeruginosa PAO1-VE2: N, E.
Pseudomonas aeruginosa 3576: N, E.
Pseudomonas aeruginosa 3573: N, E.
Pseudomonas aeruginosa BL17: N, E.
Pseudomonas aeruginosa U2504: N, E.
Pseudomonas aeruginosa BL24: N, E.
Pseudomonas aeruginosa CF5: N, E.
Pseudomonas aeruginosa BL22: N, E.
Pseudomonas aeruginosa BWHPSA007: N, E.
Pseudomonas aeruginosa PAO1-GFP: N, E.
Pseudomonas aeruginosa VRFPA08: N, E.
Pseudomonas aeruginosa M8A.4: N, E.
Pseudomonas aeruginosa BWHPSA015: N, E.
Pseudomonas aeruginosa S35004: N, E.
Pseudomonas aeruginosa PAO579: N, E.
Pseudomonas aeruginosa M8A.1: N, E.
Pseudomonas aeruginosa VRFPA06: N, E.
Pseudomonas aeruginosa CIG1: N, E.
Pseudomonas aeruginosa BL06: N, E.
Pseudomonas aeruginosa LESlike1: N, E.
Pseudomonas aeruginosa MSH-10: N, E.
Pseudomonas aeruginosa BL07: N, E.
Pseudomonas aeruginosa PA1R: N, E.
Pseudomonas aeruginosa M10: N, E.
Pseudomonas aeruginosa IGB83: N, E.
Pseudomonas aeruginosa BL02: N, E.
Pseudomonas aeruginosa PAO1: N, E.
Pseudomonas aeruginosa BWHPSA020: N, E.
Pseudomonas aeruginosa ID4365: N, E.
Pseudomonas aeruginosa C40: N, E.
Pseudomonas aeruginosa 19660: N, E.
Pseudomonas aeruginosa BWHPSA004: N, E.
Pseudomonas aeruginosa MTB-1: N, E.
Pseudomonas aeruginosa BWH036: N, E.
Pseudomonas aeruginosa BWHPSA010: N, E.
Pseudomonas aeruginosa LESlike7: N, E.
Pseudomonas aeruginosa 3581: N, E.
Pseudomonas aeruginosa BWH030: N, E.
Pseudomonas aeruginosa C41: N, E.
Pseudomonas aeruginosa VRFPA07: N, E.
Pseudomonas aeruginosa BWH057: N, E.
Pseudomonas aeruginosa HB13: N, E.
Pseudomonas aeruginosa BWH059: N, E.
Pseudomonas aeruginosa CF27: N, E.
Pseudomonas aeruginosa PA99: N, E.
Pseudomonas aeruginosa HB15: N, E.
Pseudomonas aeruginosa BWH049: N, E.
Pseudomonas aeruginosa LESlike4: N, E.
Pseudomonas aeruginosa CF77: N, E.
Pseudomonas aeruginosa MH27: N, E.
Pseudomonas aeruginosa SCV20265: N, E.
Pseudomonas aeruginosa BWH032: N, E.
Pseudomonas aeruginosa BWHPSA008: N, E.
Pseudomonas aeruginosa BL11: N, E.
Pseudomonas aeruginosa PA14: N, E.
Pseudomonas aeruginosa BL04: N, E.
Pseudomonas aeruginosa BWHPSA014: N, E.
Pseudomonas aeruginosa BWH053: N, E.
Pseudomonas aeruginosa BWH054: N, E.
Pseudomonas aeruginosa CF614: N, E.
Pseudomonas aeruginosa NCGM2.S1: N, E.
Pseudomonas aeruginosa MSH10: N, E.
Pseudomonas aeruginosa 3579: N, E.
Pseudomonas aeruginosa MSH3: N, E.
Pseudomonas aeruginosa C20: N, E.
Pseudomonas aeruginosa BWH058: N, E.
Pseudomonas aeruginosa Z61: N, E.
Pseudomonas aeruginosa YL84: N, E.
Pseudomonas aeruginosa BWHPSA018: N, E.
Pseudomonas aeruginosa BWH055: N, E.
Pseudomonas aeruginosa BL15: N, E.
Pseudomonas aeruginosa BWHPSA042: N, E.
Pseudomonas aeruginosa BWHPSA021: N, E.
Pseudomonas aeruginosa CF18: N, E.
Pseudomonas aeruginosa BWH033: N, E.
Pseudomonas aeruginosa 148: N, E.
Pseudomonas aeruginosa PA103: N, E.
Pseudomonas aeruginosa BL23: N, E.
Pseudomonas aeruginosa MPAO1/P1: N, E.
Pseudomonas aeruginosa 3580: N, E.
Pseudomonas aeruginosa 62: N, E.
Pseudomonas aeruginosa 6077: N, E.
Pseudomonas aeruginosa C48: N, E.
Pseudomonas aeruginosa BWHPSA041: N, E.
Pseudomonas aeruginosa BWHPSA023: N, E.
Pseudomonas aeruginosa BWHPSA045: N, E.
Pseudomonas aeruginosa BL14: N, E.
Pseudomonas aeruginosa BL08: N, E.
Pseudomonas aeruginosa BWHPSA017: N, E.
Pseudomonas aeruginosa BWHPSA039: N, E.
Pseudomonas aeruginosa DHS29: N, E.
Pseudomonas aeruginosa CI27: N, E.
Pseudomonas aeruginosa X24509: N, E.
Pseudomonas aeruginosa BWHPSA040: N, E.
Pseudomonas aeruginosa 3578: N, E.
Pseudomonas aeruginosa PS75: N, E.
Pseudomonas aeruginosa RP73: N, E.
Pseudomonas aeruginosa BWHPSA013: N, E.
Pseudomonas aeruginosa PA96: N, E.
Pseudomonas aeruginosa E2: N, E.
Pseudomonas aeruginosa BWH031: N, E.
Pseudomonas aeruginosa JJ692: N, E.
Pseudomonas aeruginosa MH38: N, E.
Pseudomonas aeruginosa B136-33: N, E.
Pseudomonas aeruginosa BWHPSA009: N, E.
Pseudomonas aeruginosa PA38182: N, E.
Pseudomonas aeruginosa WC55: N, E.
Pseudomonas aeruginosa BWHPSA026: N, E.
Pseudomonas aeruginosa X13273: N, E.
Pseudomonas aeruginosa C23: N, E.
Pseudomonas aeruginosa BL18: N, E.
Pseudomonas aeruginosa SG17M: N, E.
Pseudomonas aeruginosa PA45: N, E.
Pseudomonas aeruginosa BWH060: N, E.
Pseudomonas aeruginosa BWHPSA016: N, E.
Pseudomonas aeruginosa NCMG1179: N, E.
Pseudomonas aeruginosa BWHPSA025: N, E.
Pseudomonas aeruginosa BWH029: N, E.
Pseudomonas aeruginosa BL21: N, E.
Pseudomonas aeruginosa BL20: N, E.
Pseudomonas aeruginosa BWHPSA006: N, E.
Pseudomonas aeruginosa M18: N, E.
Pseudomonas aeruginosa BWHPSA037: N, E.
Pseudomonas aeruginosa PAK: N, E.
Pseudomonas aeruginosa BWH056: N, E.
Pseudomonas aeruginosa BL09: N, E.
Pseudomonas aeruginosa PS50: N, E.
Pseudomonas aeruginosa BWHPSA011: N, E.
Pseudomonas aeruginosa BL19: N, E.
Pseudomonas aeruginosa M8A.2: N, E.
Pseudomonas aeruginosa BWH052: N, E.
Pseudomonas aeruginosa BWHPSA012: N, E.
Pseudomonas aeruginosa LES400: N, E.
Pseudomonas aeruginosa BL10: N, E.
Pseudomonas aeruginosa VRFPA03: N, E.
Pseudomonas aeruginosa LES431: N, E.
Pseudomonas aeruginosa PS42: N, E.
Pseudomonas aeruginosa BL13: N, E.
Pseudomonas aeruginosa M8A.3: N, E.
Pseudomonas aeruginosa LESB65: N, E.
Pseudomonas aeruginosa 3575: N, E.
Pseudomonas aeruginosa DK1: N, E.
Bordetella petrii DSM 12804: N, E.
Bordetella sp. IITR-02: N, E.
Pseudomonas azelaica: N, E.
Pseudomonas nitroreducens: N, E.
Alcaligenes eutrophus: N, E.
Cupriavidus necator: N, E.
Ralstonia eutropha H16: N, E.
Cupriavidus necator N-1: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MLTEGLSIDAKGGGRFGAHLQLPARGRGPVVIVAQEIFGVNPFMTEVLAW LASEGFVGLCPDLYWRHGPGIEFDPNDEVQRARALGMFRDYKLEDGVADL RATVAYAASQPFCDGGVAVIGYCLGGALAYEVAAEGFAQCCVGYYGVGFE KRLERARLVKTPSMFHMGTNDHFVTAEARQLITNAFEANPAIALHWYDAG HSFARASSPNFSPEATRTANARTLEMLKRMKPIGTIGQ
References
6 moreTitle: Development and application of PCR primers for the detection of the tfd genes in Delftia acidovorans P4a involved in the degradation of 2,4-D. Hoffmann D, Kleinsteuber S, Mueller RH, Babel W Ref: Acta Biotechnol, 21:321, 2001 : PubMed
Title: Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71 Potrawfke T, Armengaud J, Wittich RM Ref: Journal of Bacteriology, 183:997, 2001 : PubMed
The nucleotide sequence of a 10,528-bp region comprising the chlorocatechol pathway gene cluster tetRtetCDEF of the 1,2,3,4-tetrachlorobenzene via the tetrachlorocatechol-mineralizing bacterium Pseudomonas chlororaphis RW71 (T. Potrawfke, K. N. Timmis, and R.-M. Wittich, Appl. Environ. Microbiol. 64:3798-3806, 1998) was analyzed. The chlorocatechol 1,2-dioxygenase gene tetC was cloned and overexpressed in Escherichia coli. The recombinant gene product was purified, and the alpha,alpha-homodimeric TetC was characterized. Electron paramagnetic resonance measurements confirmed the presence of a high-spin-state Fe(III) atom per monomer in the holoprotein. The productive transformation by purified TetC of chlorocatechols bearing chlorine atoms in positions 4 and 5 provided strong evidence for a significantly broadened substrate spectrum of this dioxygenase compared with other chlorocatechol dioxygenases. The conversion of 4,5-dichloro- or tetrachlorocatechol, in the presence of catechol, displayed strong competitive inhibition of catechol turnover. 3-Chlorocatechol, however, was simultaneously transformed, with a rate similar to that of the 4,5-halogenated catechols, indicating similar specificity constants. These novel characteristics of TetC thus differ significantly from results obtained from hitherto analyzed catechol 1,2-dioxygenases and chlorocatechol 1,2-dioxygenases.
        
Title: Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates van der Meer JR, Eggen RI, Zehnder AJ, de Vos WM Ref: Journal of Bacteriology, 173:2425, 1991 : PubMed
Pseudomonas sp. strain P51 contains two gene clusters located on catabolic plasmid pP51 that encode the degradation of chlorinated benzenes. The nucleotide sequence of a 5,499-bp region containing the chlorocatechol-oxidative gene cluster tcbCDEF was determined. The sequence contained five large open reading frames, which were all colinear. The functionality of these open reading frames was studied with various Escherichia coli expression systems and by analysis of enzyme activities. The first gene, tcbC, encodes a 27.5-kDa protein with chlorocatechol 1,2-dioxygenase activity. The tcbC gene is followed by tcbD, which encodes cycloisomerase II (39.5 kDa); a large open reading frame (ORF3) with an unknown function; tcbE, which encodes hydrolase II (25.8 kDa); and tcbF, which encodes a putative trans-dienelactone isomerase (37.5 kDa). The tcbCDEF gene cluster showed strong DNA homology (between 57.6 and 72.1% identity) and an organization similar to that of other known plasmid-encoded operons for chlorocatechol metabolism, e.g., clcABD of Pseudomonas putida and tfdCDEF of Alcaligenes eutrophus JMP134. The identity between amino acid sequences of functionally related enzymes of the three operons varied between 50.6 and 75.7%, with the tcbCDEF and tfdCDEF pair being the least similar of the three. Measurements of the specific activities of chlorocatechol 1,2-dioxygenases encoded by tcbC, clcA, and tfdC suggested that a specialization among type II enzymes has taken place. TcbC preferentially converts 3,4-dichlorocatechol relative to other chlorinated catechols, whereas TfdC has a higher activity toward 3,5-dichlorocatechol. ClcA takes an intermediate position, with the highest activity level for 3-chlorocatechol and the second-highest level for 3,5-dichlorocatechol.
        
6 lessTitle: Complete genome sequence of the haloaromatic acid-degrading bacterium Achromobacter xylosoxidans A8 Strnad H, Ridl J, Paces J, Kolar M, Vlcek C, Paces V Ref: Journal of Bacteriology, 193:791, 2011 : PubMed
Achromobacter xylosoxidans strain A8 was isolated from soil contaminated with polychlorinated biphenyls. It can use 2-chlorobenzoate and 2,5-dichlorobenzoate as sole sources of carbon and energy. This property makes it a good starting microorganism for further development toward a bioremediation tool. The genome of A. xylosoxidans consists of a 7-Mb chromosome and two large plasmids (98 kb and 248 kb). Besides genes for the utilization of xenobiotic organic substrates, it contains genes associated with pathogenesis, toxin production, and resistance. Here, we report the complete genome sequence.
BACKGROUND: Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described. RESULTS: In this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the clc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae. CONCLUSION: The genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches.
        
Title: Nucleotide sequence, organization and characterization of the (halo)aromatic acid catabolic plasmid pA81 from Achromobacter xylosoxidans A8 Jencova V, Strnad H, Chodora Z, Ulbrich P, Vlcek C, Hickey WJ, Paces V Ref: Res Microbiol, 159:118, 2008 : PubMed
The complete 98,192bp nucleotide sequence was determined for plasmid pA81, which is harbored by the haloaromatic acid-degrading bacterium Achromobacter xylosoxidans A8. The majority of the 103 open reading frames identified on pA81 could be categorized as either "backbone" genes, genes encoding (halo)aromatic compound degradation, or heavy metal resistance determinants. The backbone genes controlled conjugative transfer, replication and plasmid stability, and were well conserved with other IncP1-beta plasmids. Genes encoding (halo)aromatic degradation were clustered within a type I transposon, TnAxI, and included two ring-hydroxylating oxygenases (ortho-halobenzoate oxygenase, salicylate 5-hydroxylase) and a modified ortho-cleavage pathway for chlorocatechol degradation. The cluster of heavy metal resistance determinants was contained within a Type II transposon TnAxII, and included a predicted P-type ATPase and cation diffusion facilitator system. Genes identical to those carried by TnAxI and TnAxII were identified on other biodegradative/resistance plasmids and genomic islands, indicating an evolutionary relationship between these elements. Collectively, these insights further our understanding of how mobile elements, and interactions between mobile elements affect the fate of organic and inorganic toxicants in the environment.
Achromobacter xylosoxidans strain A8, isolated from soil contaminated with polychlorinated biphenyls (PCBs), is able to use 2-clorobenzoate (2-CB) and 2,5-dichlorobenzoate (2,5-DCB) as sole sources of carbon and energy. The genome of this strain contains two large conjugative plasmids pA81 and pA82. A cluster of genes homologous to genes of a modified ortho-cleavage pathway was identified on the fragment of pA81. The genes, mocpR-ABCD, are highly homologous to the cbnR-ABXCD genes on plasmid pENH91 from Ralstonia eutropha ENH91, the tetR-CDXEF genes from Pseudomonas chlororaphis RW71 and tcbR-CDXEF genes identified on plasmid pP51 from Pseudomonas sp. strain P51. The structures of mocp, cbn, tet and tcb gene clusters are completely conserved in these bacteria. However, the sequences flanking the mocp genes differ from the sequence surrounding the tcb genes. A gene for IS1600 transposase, found on the ends of cbn genes, was identified only downstream from the mocp genes. The vicinity of the transposase gene and the localization of the mocp genes on the conjugative plasmid suggest that chlorocatechol degradation genes are transferable. Hybridization analysis confirmed that mocp genes are located only on pA81, which is thereby essential for the degradation of CBs by this strain. Individual genes were cloned, expressed in Escherichia coli and their activities confirmed by reaction with suitable substrates.
        
Title: A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a Hoffmann D, Kleinsteuber S, Muller RH, Babel W Ref: Microbiology, 149:2545, 2003 : PubMed
The bacterial strain Delftia acidovorans P4a, isolated from an extreme environment (heavily contaminated with organochlorines, highly alkaline conditions in an aqueous environment), was found to mineralize 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid under alkaline conditions. Screening a genomic DNA library of the alkalitolerant strain for 2,4-D genes revealed the presence of the two 2,4-D gene clusters tfdCDEF and tfdC(II)E(II)BKA, tfdR genes being located in the vicinity of each tfd gene cluster. The results showed that the putative genes of the complete 2,4-D degradation pathway are organized in a single genomic unit. Sequence similarities to homologous gene clusters indicate that the individual tfd elements of strain P4a do not share a common origin, but were brought together by recombination events. The entire region is flanked by insertion elements of the IS1071 and IS1380 families, forming a transposon-like structure of about 30 kb, of which 28.4 kb were analysed. This element was shown to be located on the bacterial chromosome. The present study provides the first reported case of a chromosomally located catabolic transposon which carries the genes for the complete 2,4-D degradation pathway.
        
Title: Development and application of PCR primers for the detection of the tfd genes in Delftia acidovorans P4a involved in the degradation of 2,4-D. Hoffmann D, Kleinsteuber S, Mueller RH, Babel W Ref: Acta Biotechnol, 21:321, 2001 : PubMed
Title: Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71 Potrawfke T, Armengaud J, Wittich RM Ref: Journal of Bacteriology, 183:997, 2001 : PubMed
The nucleotide sequence of a 10,528-bp region comprising the chlorocatechol pathway gene cluster tetRtetCDEF of the 1,2,3,4-tetrachlorobenzene via the tetrachlorocatechol-mineralizing bacterium Pseudomonas chlororaphis RW71 (T. Potrawfke, K. N. Timmis, and R.-M. Wittich, Appl. Environ. Microbiol. 64:3798-3806, 1998) was analyzed. The chlorocatechol 1,2-dioxygenase gene tetC was cloned and overexpressed in Escherichia coli. The recombinant gene product was purified, and the alpha,alpha-homodimeric TetC was characterized. Electron paramagnetic resonance measurements confirmed the presence of a high-spin-state Fe(III) atom per monomer in the holoprotein. The productive transformation by purified TetC of chlorocatechols bearing chlorine atoms in positions 4 and 5 provided strong evidence for a significantly broadened substrate spectrum of this dioxygenase compared with other chlorocatechol dioxygenases. The conversion of 4,5-dichloro- or tetrachlorocatechol, in the presence of catechol, displayed strong competitive inhibition of catechol turnover. 3-Chlorocatechol, however, was simultaneously transformed, with a rate similar to that of the 4,5-halogenated catechols, indicating similar specificity constants. These novel characteristics of TetC thus differ significantly from results obtained from hitherto analyzed catechol 1,2-dioxygenases and chlorocatechol 1,2-dioxygenases.
        
Title: The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate Ogawa N, Miyashita K Ref: Applied Environmental Microbiology, 65:724, 1999 : PubMed
Alcaligenes eutrophus (Ralstonia eutropha) NH9, isolated in Japan, utilizes 3-chlorobenzoate as its sole source of carbon and energy. Sequencing of the relevant region of plasmid pENH91 from strain NH9 revealed that the genes for the catabolic enzymes were homologous to the genes of the modified ortho-cleavage pathway. The genes from strain NH9 (cbnR-ABCD) showed the highest homology (89 to 100% identity at the nucleotide level) to the tcbR-CDEF genes on plasmid pP51 of the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, which was isolated in The Netherlands. The structure of the operon, including the lengths of open reading frames and intervening sequences, was completely conserved between the cbn and tcb genes. Most nucleotide substitutions were localized within and proximal to the cbnB (tcbD) gene. The difference in the chloroaromatics that the two strains could use as growth substrates seemed to be due to differences in enzymes that convert substrates to chlorocatechols. The restriction map of plasmid pENH91 was clearly different from that of pP51 except in the regions that contained the cbnR-ABCD and tcbR-CDEF genes, respectively, suggesting that the chlorocatechol gene clusters might have been transferred as units. Two homologous sequences, present as direct repeats in both flanking regions of the cbnR-ABCD genes on pENH91, were found to be identical insertion sequences (ISs), designated IS1600, which formed a composite transposon designated Tn5707. Although the tcbR-CDEF genes were not associated with similar ISs, a DNA fragment homologous to IS1600 was cloned from the chromosome of strain P51. The sequence of the fragment suggested that it might be a remnant of an IS. The two sequences, together with IS1326 and nmoT, formed a distinct cluster on a phylogenetic tree of the IS21 family. The diversity of the sources of these IS or IS-like elements suggests the prevalence of ISs of this type.
        
Title: Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates van der Meer JR, Eggen RI, Zehnder AJ, de Vos WM Ref: Journal of Bacteriology, 173:2425, 1991 : PubMed
Pseudomonas sp. strain P51 contains two gene clusters located on catabolic plasmid pP51 that encode the degradation of chlorinated benzenes. The nucleotide sequence of a 5,499-bp region containing the chlorocatechol-oxidative gene cluster tcbCDEF was determined. The sequence contained five large open reading frames, which were all colinear. The functionality of these open reading frames was studied with various Escherichia coli expression systems and by analysis of enzyme activities. The first gene, tcbC, encodes a 27.5-kDa protein with chlorocatechol 1,2-dioxygenase activity. The tcbC gene is followed by tcbD, which encodes cycloisomerase II (39.5 kDa); a large open reading frame (ORF3) with an unknown function; tcbE, which encodes hydrolase II (25.8 kDa); and tcbF, which encodes a putative trans-dienelactone isomerase (37.5 kDa). The tcbCDEF gene cluster showed strong DNA homology (between 57.6 and 72.1% identity) and an organization similar to that of other known plasmid-encoded operons for chlorocatechol metabolism, e.g., clcABD of Pseudomonas putida and tfdCDEF of Alcaligenes eutrophus JMP134. The identity between amino acid sequences of functionally related enzymes of the three operons varied between 50.6 and 75.7%, with the tcbCDEF and tfdCDEF pair being the least similar of the three. Measurements of the specific activities of chlorocatechol 1,2-dioxygenases encoded by tcbC, clcA, and tfdC suggested that a specialization among type II enzymes has taken place. TcbC preferentially converts 3,4-dichlorocatechol relative to other chlorinated catechols, whereas TfdC has a higher activity toward 3,5-dichlorocatechol. ClcA takes an intermediate position, with the highest activity level for 3-chlorocatechol and the second-highest level for 3,5-dichlorocatechol.