EDS1, an essential component of R gene-mediated disease resistance The Arabidopsis EDS1 (arath-eds1) and PAD4 (arath-F22O6.190) genes encode lipase-like proteins that function in resistance (R) gene-mediated and basal plant disease resistance.EDS1 can dimerize and interact with PAD4 or with SAG101 (arath-At5g14930). Plants utilise intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors to detect pathogen effectors and activate local and systemic defence. NRG1 and ADR1 'helper' NLRs (RNLs) cooperate with enhanced disease susceptibility 1 (EDS1), senescence-associated gene 101 (SAG101) and phytoalexin-deficient 4 (PAD4) lipase-like proteins to mediate signalling from TIR domain NLR receptors (TNLs). Two distinct modules (NRG1/EDS1/SAG101 and ADR1/EDS1/PAD4) mediate TNL receptor defence signalling
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Viridiplantae: NE > Streptophyta: NE > Streptophytina: NE > Embryophyta: NE > Tracheophyta: NE > Euphyllophyta: NE > Spermatophyta: NE > Magnoliophyta: NE > Mesangiospermae: NE > eudicotyledons: NE > Gunneridae: NE > Pentapetalae: NE > rosids: NE > malvids: NE > Brassicales: NE > Brassicaceae: NE > Camelineae: NE > Arabidopsis: NE > Arabidopsis thaliana: NE
No mutation 7 structures(e.g. : 4NFU, 6I8G, 6I8H... more)(less) 4NFU: Structure of the central plant immunity signaling node EDS1 in complex with its interaction partner SAG101, 6I8G: Structure of the plant immune signaling node EDS1 (enhanced disease susceptibility 1) in complex with nanobody ENB73, 6I8H: Structure of the plant immune signaling node EDS1 (enhanced disease susceptibility 1) in complex with nanobody ENB15, 6Q6Z: Structure of the plant immune signaling node EDS1 (enhanced disease susceptibility 1) in complex with nanobody ENB21, 7XDD: Cryo-EM structure of EDS1 and PAD4, 7XEY: EDS1-PAD4 complexed with pRib-ADP, 7XJP: Cryo-EM structure of EDS1 and SAG101 with ATP-APDR No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MAFEALTGINGDLITRSWSASKQAYLTERYHKEEAGAVVIFAFQPSFSEK DFFDPDNKSSFGEIKLNRVQFPCMRKIGKGDVATVNEAFLKNLEAVIDPR TSFQASVEMAVRSRKQIVFTGHSSGGATAILATVWYLEKYFIRNPNVYLE PRCVTFGAPLVGDSIFSHALGREKWSRFFVNFVTRFDIVPRITLARKASV EETLPHVLAQLDPRNSSVQESEQRITEFYTSVMRDTSTVANQAVCELTGS AEAILETLSSFLELSPYRPAGTFVFSTEKRLVAVNNSDAILQMLFYTCQA SDEQEWSLIPFRSIRDHHSYEELVQSMGMKLFNHLDGENSIESSLNDLGV STRGRQYVQAALEEEKKRVENQKKIIQVIQQERFLKKLAWIEDEYKPKCQ AHKNGYYDSFKVSNEENDFKANVKRAELAGVFDEVLGLLKKCQLPDEFEG DIDWIKLATRYRRLVEPLDIANYHRHLKNEDTGPYMKRGRPTRYIYAQRG YEHHILKPNGMIAEDVFWNKVNGLNLGLQLEEIQETLKNSGSECGSCFWA EVEELKGKPYEEVEVRVKTLEGMLREWITAGEVDEKEIFLEGSTFRKWWI TLPKNHKSHSPLRDYMMDEITDT
Arabidopsis pathogen effector-triggered immunity (ETI) is controlled by a family of three lipase-like proteins EDS1, PAD4 and SAG101 and two sub-families of HET-S/LOB-B (HeLo)-domain "helper" NLRs, ADR1s and NRG1s. EDS1-PAD4 dimers cooperate with ADR1s, and EDS1-SAG101 dimers with NRG1s, in two separate defense-promoting modules. EDS1-PAD4-ADR1 and EDS1-SAG101-NRG1 complexes were detected in immune-activated leaf extracts but the molecular determinants for specific complex formation and function remain unknown. EDS1 signaling is mediated by a C-terminal EP domain (EPD) surface surrounding a cavity formed by the heterodimer. Here we investigated whether the EPDs of PAD4 and SAG101 contribute to EDS1 dimer functions. Using a structure-guided approach, we undertook a comprehensive mutational analysis of Arabidopsis PAD4. We identify two conserved residues (Arg314 and Lys380) lining the PAD4 EPD cavity that are essential for EDS1-PAD4 mediated pathogen resistance, but are dispensible for PAD4 mediated restriction of green peach aphid infestation. Positionally equivalent Met304 and Arg373 at the SAG101 EPD cavity are required for EDS1-SAG101 promotion of ETI-related cell death. In a PAD4 and SAG101 interactome analysis of ETI-activated tissues, PAD4(R314A) and SAG101(M304R) EPD variants maintain interaction with EDS1 but lose association, respectively, with helper NLRs ADR1-L1 and NRG1.1, and other immune-related proteins. Our data reveal a fundamental contribution of similar but non-identical PAD4 and SAG101 EPD surfaces to specific EDS1 dimer protein interactions and pathogen immunity.
Plant nucleotide-binding leucine-rich repeat-containing (NLR) receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain sense pathogen effectors to enable TIR-encoded NADase activity for immune signaling. TIR-NLR signaling requires helper NLRs N requirement gene 1 (NRG1) and Activated Disease Resistance 1 (ADR1), and Enhanced Disease Susceptibility 1 (EDS1) that forms a heterodimer with each of its paralogs Phytoalexin Deficient 4 (PAD4) and Senescence-Associated Gene101 (SAG101). Here, we show that TIR-containing proteins catalyze production of 2'-(5''-phosphoribosyl)-5'-adenosine mono-/di-phosphate (pRib-AMP/ADP) in vitro and in planta. Biochemical and structural data demonstrate that EDS1-PAD4 is a receptor complex for pRib-AMP/ADP, which allosterically promote EDS1-PAD4 interaction with ADR1-L1 but not NRG1A. Our study identifies TIR-catalyzed pRib-AMP/ADP as a missing link in TIR signaling via EDS1-PAD4 and as likely second messengers for plant immunity.
Plants utilise intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors to detect pathogen effectors and activate local and systemic defence. NRG1 and ADR1 "helper" NLRs (RNLs) cooperate with enhanced disease susceptibility 1 (EDS1), senescence-associated gene 101 (SAG101) and phytoalexin-deficient 4 (PAD4) lipase-like proteins to mediate signalling from TIR domain NLR receptors (TNLs). The mechanism of RNL/EDS1 family protein cooperation is not understood. Here, we present genetic and molecular evidence for exclusive EDS1/SAG101/NRG1 and EDS1/PAD4/ADR1 co-functions in TNL immunity. Using immunoprecipitation and mass spectrometry, we show effector recognition-dependent interaction of NRG1 with EDS1 and SAG101, but not PAD4. An EDS1-SAG101 complex interacts with NRG1, and EDS1-PAD4 with ADR1, in an immune-activated state. NRG1 requires an intact nucleotide-binding P-loop motif, and EDS1 a functional EP domain and its partner SAG101, for induced association and immunity. Thus, two distinct modules (NRG1/EDS1/SAG101 and ADR1/EDS1/PAD4) mediate TNL receptor defence signalling.
Arabidopsis pathogen effector-triggered immunity (ETI) is controlled by a family of three lipase-like proteins EDS1, PAD4 and SAG101 and two sub-families of HET-S/LOB-B (HeLo)-domain "helper" NLRs, ADR1s and NRG1s. EDS1-PAD4 dimers cooperate with ADR1s, and EDS1-SAG101 dimers with NRG1s, in two separate defense-promoting modules. EDS1-PAD4-ADR1 and EDS1-SAG101-NRG1 complexes were detected in immune-activated leaf extracts but the molecular determinants for specific complex formation and function remain unknown. EDS1 signaling is mediated by a C-terminal EP domain (EPD) surface surrounding a cavity formed by the heterodimer. Here we investigated whether the EPDs of PAD4 and SAG101 contribute to EDS1 dimer functions. Using a structure-guided approach, we undertook a comprehensive mutational analysis of Arabidopsis PAD4. We identify two conserved residues (Arg314 and Lys380) lining the PAD4 EPD cavity that are essential for EDS1-PAD4 mediated pathogen resistance, but are dispensible for PAD4 mediated restriction of green peach aphid infestation. Positionally equivalent Met304 and Arg373 at the SAG101 EPD cavity are required for EDS1-SAG101 promotion of ETI-related cell death. In a PAD4 and SAG101 interactome analysis of ETI-activated tissues, PAD4(R314A) and SAG101(M304R) EPD variants maintain interaction with EDS1 but lose association, respectively, with helper NLRs ADR1-L1 and NRG1.1, and other immune-related proteins. Our data reveal a fundamental contribution of similar but non-identical PAD4 and SAG101 EPD surfaces to specific EDS1 dimer protein interactions and pathogen immunity.
Plant nucleotide-binding leucine-rich repeat-containing (NLR) receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain sense pathogen effectors to enable TIR-encoded NADase activity for immune signaling. TIR-NLR signaling requires helper NLRs N requirement gene 1 (NRG1) and Activated Disease Resistance 1 (ADR1), and Enhanced Disease Susceptibility 1 (EDS1) that forms a heterodimer with each of its paralogs Phytoalexin Deficient 4 (PAD4) and Senescence-Associated Gene101 (SAG101). Here, we show that TIR-containing proteins catalyze production of 2'-(5''-phosphoribosyl)-5'-adenosine mono-/di-phosphate (pRib-AMP/ADP) in vitro and in planta. Biochemical and structural data demonstrate that EDS1-PAD4 is a receptor complex for pRib-AMP/ADP, which allosterically promote EDS1-PAD4 interaction with ADR1-L1 but not NRG1A. Our study identifies TIR-catalyzed pRib-AMP/ADP as a missing link in TIR signaling via EDS1-PAD4 and as likely second messengers for plant immunity.
Plants utilise intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors to detect pathogen effectors and activate local and systemic defence. NRG1 and ADR1 "helper" NLRs (RNLs) cooperate with enhanced disease susceptibility 1 (EDS1), senescence-associated gene 101 (SAG101) and phytoalexin-deficient 4 (PAD4) lipase-like proteins to mediate signalling from TIR domain NLR receptors (TNLs). The mechanism of RNL/EDS1 family protein cooperation is not understood. Here, we present genetic and molecular evidence for exclusive EDS1/SAG101/NRG1 and EDS1/PAD4/ADR1 co-functions in TNL immunity. Using immunoprecipitation and mass spectrometry, we show effector recognition-dependent interaction of NRG1 with EDS1 and SAG101, but not PAD4. An EDS1-SAG101 complex interacts with NRG1, and EDS1-PAD4 with ADR1, in an immune-activated state. NRG1 requires an intact nucleotide-binding P-loop motif, and EDS1 a functional EP domain and its partner SAG101, for induced association and immunity. Thus, two distinct modules (NRG1/EDS1/SAG101 and ADR1/EDS1/PAD4) mediate TNL receptor defence signalling.
Plant nucleotide binding/leucine-rich repeat (NLR) immune receptors are activated by pathogen effectors to trigger host defenses and cell death. Toll-interleukin 1 receptor domain NLRs (TNLs) converge on the ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) family of lipase-like proteins for all resistance outputs. In Arabidopsis (Arabidopsis thaliana) TNL-mediated immunity, AtEDS1 heterodimers with PHYTOALEXIN DEFICIENT4 (AtPAD4) transcriptionally induced basal defenses. AtEDS1 uses the same surface to interact with PAD4-related SENESCENCE-ASSOCIATED GENE101 (AtSAG101), but the role of AtEDS1-AtSAG101 heterodimers remains unclear. We show that AtEDS1-AtSAG101 functions together with N REQUIRED GENE1 (AtNRG1) coiled-coil domain helper NLRs as a coevolved TNL cell death-signaling module. AtEDS1-AtSAG101-AtNRG1 cell death activity is transferable to the Solanaceous species Nicotiana benthamiana and cannot be substituted by AtEDS1-AtPAD4 with AtNRG1 or AtEDS1-AtSAG101 with endogenous NbNRG1. Analysis of EDS1-family evolutionary rate variation and heterodimer structure-guided phenotyping of AtEDS1 variants and AtPAD4-AtSAG101 chimeras identify closely aligned a-helical coil surfaces in the AtEDS1-AtSAG101 partner C-terminal domains that are necessary for reconstituted TNL cell death signaling. Our data suggest that TNL-triggered cell death and pathogen growth restriction are determined by distinctive features of EDS1-SAG101 and EDS1-PAD4 complexes and that these signaling machineries coevolved with other components within plant species or clades to regulate downstream pathways in TNL immunity.
        
Title: Arabidopsis immunity regulator EDS1 in a PAD4/SAG101-unbound form is a monomer with an inherently inactive conformation Voss M, Toelzer C, Bhandari DD, Parker JE, Niefind K Ref: J Struct Biol, 208:107390, 2019 : PubMed
In plant innate immunity, enhanced disease susceptibility 1 (EDS1) integrates all pathogen-induced signals transmitted by TIR-type NLR receptors. Driven by an N-terminal alpha/beta-hydrolase-fold domain with a protruding interaction helix, EDS1 assembles with two homologs, phytoalexin-deficient 4 (PAD4) and senescence-associated gene 101 (SAG101). The resulting heterodimers are critical for EDS1 function and structurally well characterized. Here, we resolve solution and crystal structures of unbound Arabidopsis thaliana EDS1 (AtEDS1) using nanobodies for crystallization. These structures, together with gel filtration and immunoprecipitation data, show that PAD4/SAG101-unbound AtEDS1 is stable as a monomer and does not form the homodimers recorded in public databases. Its PAD4/SAG101 anchoring helix is disordered unless engaged in protein/protein interactions. As in the complex with SAG101, monomeric AtEDS1 has a substrate-inaccessible esterase triad with a blocked oxyanion hole and without space for a covalent acyl intermediate. These new structures suggest that the AtEDS1 monomer represents an inactive or pre-activated ground state.
Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Here, we show that Arabidopsis (Arabidopsis thaliana) EDS1 is required for both SAR signal generation in primary infected leaves and SAR signal perception in systemic uninfected tissues. In contrast to SAR signal generation, local resistance remains intact in eds1 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. We utilized the SAR-specific phenotype of the eds1 mutant to identify new SAR regulatory proteins in plants conditionally expressing AvrRpm1. Comparative proteomic analysis of apoplast-enriched extracts from AvrRpm1-expressing wild-type and eds1 mutant plants led to the identification of 12 APOPLASTIC, EDS1-DEPENDENT (AED) proteins. The genes encoding AED1, a predicted aspartyl protease, and another AED, LEGUME LECTIN-LIKE PROTEIN1 (LLP1), were induced locally and systemically during SAR signaling and locally by salicylic acid (SA) or its functional analog, benzo 1,2,3-thiadiazole-7-carbothioic acid S-methyl ester. Because conditional overaccumulation of AED1-hemagglutinin inhibited SA-induced resistance and SAR but not local resistance, the data suggest that AED1 is part of a homeostatic feedback mechanism regulating systemic immunity. In llp1 mutant plants, SAR was compromised, whereas the local resistance that is normally associated with EDS1 and SA as well as responses to exogenous SA appeared largely unaffected. Together, these data indicate that LLP1 promotes systemic rather than local immunity, possibly in parallel with SA. Our analysis reveals new positive and negative components of SAR and reinforces the notion that SAR represents a distinct phase of plant immunity beyond local resistance.
Biotrophic plant pathogens encounter a postinfection basal resistance layer controlled by the lipase-like protein enhanced disease susceptibility 1 (EDS1) and its sequence-related interaction partners, senescence-associated gene 101 (SAG101) and phytoalexin deficient 4 (PAD4). Maintainance of separate EDS1 family member clades through angiosperm evolution suggests distinct functional attributes. We report the Arabidopsis EDS1-SAG101 heterodimer crystal structure with juxtaposed N-terminal alpha/beta hydrolase and C-terminal alpha-helical EP domains aligned via a large conserved interface. Mutational analysis of the EDS1-SAG101 heterodimer and a derived EDS1-PAD4 structural model shows that EDS1 signals within mutually exclusive heterocomplexes. Although there is evolutionary conservation of alpha/beta hydrolase topology in all three proteins, a noncatalytic resistance mechanism is indicated. Instead, the respective N-terminal domains appear to facilitate binding of the essential EP domains to create novel interaction surfaces on the heterodimer. Transitions between distinct functional EDS1 heterodimers might explain the central importance and versatility of this regulatory node in plant immunity.
In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor-nucleotide binding-Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid-induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest.
Erwinia amylovora causes fire blight in rosaceous plants. In nonhost Arabidopsis thaliana, E. amylovora triggers necrotic symptoms associated with transient bacterial multiplication, suggesting either that A. thaliana lacks a susceptibility factor or that it actively restricts E. amylovora growth. Inhibiting plant protein synthesis at the time of infection led to an increase in necrosis and bacterial multiplication and reduced callose deposition, indicating that A. thaliana requires active protein synthesis to restrict E. amylovora growth. Analysis of the callose synthase-deficient pmr4-1 mutant indicated that lack of callose deposition alone did not lead to increased sensitivity to E. amylovora. Transcriptome analysis revealed that approximately 20% of the genes induced following E. amylovora infection are related to defense and signaling. Analysis of mutants affected in NDR1 and EDS1, two main components of the defense-gene activation observed, revealed that E. amylovora multiplied ten times more in the eds1-2 mutant than in the wild type but not in the ndr1-1 mutant. Analysis of mutants affected in three WRKY transcription factors showing EDS1-dependent activation identified WRKY46 and WRKY54 as positive regulators and WRKY70 as a negative regulator of defense against E. amylovora. Altogether, we show that EDS1 is a positive regulator of nonhost resistance against E. amylovora in A. thaliana and hypothesize that it controls the production of several effective defenses against E. amylovora through the action of WRKY46 and WRKY54, while WRKY70 acts as a negative regulator.
        
Title: Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators Bhattacharjee S, Halane MK, Kim SH, Gassmann W Ref: Science, 334:1405, 2011 : PubMed
Plant resistance proteins detect the presence of specific pathogen effectors and initiate effector-triggered immunity. Few immune regulators downstream of resistance proteins have been identified, none of which are known virulence targets of effectors. We show that Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), a positive regulator of basal resistance and of effector-triggered immunity specifically mediated by Toll-interleukin-1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR) resistance proteins, forms protein complexes with the TIR-NB-LRR disease resistance proteins RPS4 and RPS6 and with the negative immune regulator SRFR1 at a cytoplasmic membrane. Further, the cognate bacterial effectors AvrRps4 and HopA1 disrupt these EDS1 complexes. Tight association of EDS1 with TIR-NB-LRR-mediated immunity may therefore derive mainly from being guarded by TIR-NB-LRR proteins, and activation of this branch of effector-triggered immunity may directly connect to the basal resistance signaling pathway via EDS1.
Pathogen effectors are intercepted by plant intracellular nucleotide binding-leucine-rich repeat (NB-LRR) receptors. However, processes linking receptor activation to downstream defenses remain obscure. Nucleo-cytoplasmic basal resistance regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) is indispensible for immunity mediated by TIR (Toll-interleukin-1 receptor)-NB-LRR receptors. We show that Arabidopsis EDS1 molecularly connects TIR-NB-LRR disease resistance protein RPS4 recognition of bacterial effector AvrRps4 to defense pathways. RPS4-EDS1 and AvrRps4-EDS1 complexes are detected inside nuclei of living tobacco cells after transient coexpression and in Arabidopsis soluble leaf extracts after resistance activation. Forced AvrRps4 localization to the host cytoplasm or nucleus reveals cell compartment-specific RPS4-EDS1 defense branches. Although nuclear processes restrict bacterial growth, programmed cell death and transcriptional resistance reinforcement require nucleo-cytoplasmic coordination. Thus, EDS1 behaves as an effector target and activated TIR-NB-LRR signal transducer for defenses across cell compartments.
* Enhanced Disease Susceptibility1 (EDS1) is an important regulator of plant basal and receptor-triggered immunity. Arabidopsis EDS1 interacts with two related proteins, Phytoalexin Deficient4 (PAD4) and Senescence Associated Gene101 (SAG101), whose combined activities are essential for defense signaling. The different sizes and intracellular distributions of EDS1-PAD4 and EDS1-SAG101 complexes in Arabidopsis leaf tissues suggest that they perform nonredundant functions. * The nature and biological relevance of EDS1 interactions with PAD4 and SAG101 were explored using yeast three-hybrid assays, in vitro analysis of recombinant proteins purified from Escherichia coli, and characterization of Arabidopsis transgenic plants expressing an eds1 mutant (eds1(L262P) ) protein which no longer binds PAD4 but retains interaction with SAG101. * EDS1 forms molecularly distinct complexes with PAD4 or SAG101 without additional plant factors. Loss of interaction with EDS1 reduces PAD4 post-transcriptional accumulation, consistent with the EDS1 physical association stabilizing PAD4. The dissociated forms of EDS1 and PAD4 are fully competent in signaling receptor-triggered localized cell death at infection foci. By contrast, an EDS1-PAD4 complex is necessary for basal resistance involving transcriptional up-regulation of PAD4 itself and mobilization of salicylic acid defenses. * Different EDS1 and PAD4 molecular configurations have distinct and separable functions in the plant innate immune response.
        
Title: Crystallization and preliminary crystallographic analysis of Arabidopsis thaliana EDS1, a key component of plant immunity, in complex with its signalling partner SAG101 Wagner S, Rietz S, Parker JE, Niefind K Ref: Acta Crystallographica Sect F Struct Biol Cryst Commun, 67:245, 2011 : PubMed
In plants, the nucleocytoplasmic protein EDS1 (Enhanced disease susceptibility1) is an important regulator of innate immunity, coordinating host-cell defence and cell-death programs in response to pathogen attack. Arabidopsis thaliana EDS1 stabilizes and signals together with its partners PAD4 (Phytoalexin deficient4) and SAG101 (Senescence-associated gene101). Characterization of EDS1 molecular configurations in vitro and in vivo points to the formation of structurally and spatially distinct EDS1 homomeric dimers and EDS1 heteromeric complexes with either PAD4 or SAG101 as necessary components of the immune response. EDS1, PAD4 and SAG101 constitute a plant-specific protein family with a unique `EP' (EDS1-PAD4-specific) domain at their C-termini and an N-terminal domain resembling enzymes with an alpha/beta-hydrolase fold. Here, the expression, purification and crystallization of a functional EDS1 complex formed by EDS1 and SAG101 from Arabidopsis thaliana are reported. The crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 101.8, b = 115.9, c = 122.8 A, and diffracted to 3.5 A resolution.
        
Title: A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant Gao F, Shu X, Ali MB, Howard S, Li N, Winterhagen P, Qiu W, Gassmann W Ref: Planta, 231:1037, 2010 : PubMed
Vitis vinifera (grapevine) is the most economically important deciduous fruit crop, but cultivated grapevine varieties lack adequate innate immunity to a range of devastating diseases. To identify genetic resources for grapevine innate immunity and understand pathogen defense pathways in a woody perennial plant, we focus in this study on orthologs of the central Arabidopsis thaliana defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). The family of EDS1-like genes is expanded in grapevine, and members of this family were previously found to be constitutively upregulated in the resistant variety 'Norton' of the North American grapevine species Vitis aestivalis, while they were induced by Erysiphe necator, the causal agent of grapevine powdery mildew (PM), in the susceptible V. vinifera variety 'Cabernet Sauvignon'. Here, we determine the responsiveness of individual EDS1-like genes in grapevine to PM and salicylic acid, and find that EDS1-like paralogs are differentially regulated in 'Cabernet Sauvignon', while two are constitutively upregulated in 'Norton'. Sequencing of VvEDS1 and VaEDS1 cDNA and genomic clones revealed high conservation in the protein-encoding sequence and some divergence of the promoter sequence in the two grapevine varieties. Complementation of the Arabidopsis eds1-1 mutant showed that the EDS1-like gene with highest predicted amino acid sequence similarity to AtEDS1 from either grapevine varieties is a functional ortholog of AtEDS1. Together, our analyses show that differential susceptibility to PM is correlated with differences in EDS1 expression, not differences in EDS1 function, between resistant 'Norton' and susceptible 'Cabernet Sauvignon'.
An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR) receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor)-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1). In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES)) or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR)) in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack.
Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast-derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo-oxidative stress and display EDS1-dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1-regulated SA and ROS by examining gene expression profiles, photo-oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA-biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast-derived O(2)(*-) that lead to SA-assisted H(2)O(2) accumulation as part of a mechanism limiting cell death. A combination of EDS1-regulated SA-antagonized and SA-promoted processes is necessary for resistance to host-adapted pathogens and for a balanced response to photo-oxidative stress. In contrast to SA, the apoplastic ROS-producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo-oxidative stress. Thus, chloroplastic O(2)(*-) signals are processed by EDS1 to produce counter-balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O(2)(*-) or O(2)(*-)-generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment.
The interplay between pathogen effectors, their host targets, and cognate recognition proteins provides various opportunities for antagonistic cycles of selection acting on plant and pathogen to achieve or abrogate resistance, respectively. Selection has previously been shown to maintain diversity in plant proteins involved in pathogen recognition and some of their cognate pathogen effectors. We analyzed the signatures of selection on 10 Arabidopsis thaliana genes encoding defense signal transduction proteins in plants, which are potential targets of pathogen effectors. There was insufficient evidence to reject neutral evolution for 6 genes encoding signaling components consistent with these proteins not being targets of effectors and/or indicative of constraints on their ability to coevolve with pathogen effectors. Functional constraints on effector targets may have provided the driving selective force for the evolution of guard proteins. PBS1, a known target of an effector, showed little variation but is known to be monitored by a variable guard protein. Evidence of selection maintaining diversity was present at NPR1, PAD4, and EDS1. Differences in the signatures of selection observed may reflect the numbers of effectors that target a particular protein, the presence or absence of a cognate guard protein, as well as functional constraints imposed by biochemical activities or interactions with plant proteins.
Alternative splicing (AS) is a mechanism by which multiple types of mature mRNAs are generated from a single pre-mature mRNA. In this study, we completely sequenced 1800 full-length cDNAs from Arabidopsis thaliana, which had 5' and/or 3' sequences that were previously found to have AS events or alternative transcription start sites. Unexpectedly, these sequences gave us further evidence of AS, as 601 out of 1800 transcripts showed novel AS events. We focused on the combination patterns of multiple AS events within individual genes. Interestingly, some specific AS event combination patterns tended to appear more frequently than expected. The two most common patterns were: (i) alternative donor-0 approximately 12 times of exon skips-alternative acceptor and (ii) several times ( approximately 8) of retained introns. We also found that multiple AS events in a transcript tend to have the same effects concerning the length of the mature mRNA. Our current results are consistent with our previous observations, which showed changes in AS profiles under different conditions, and suggest the involvement of hypothetical cis- and trans-acting factors in the regulation of AS events.
Plant innate immunity against invasive biotrophic pathogens depends on the intracellular defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). We show here that Arabidopsis thaliana EDS1 interacts in vivo with another protein, SENESCENCE-ASSOCIATED GENE101 (SAG101), discovered through a proteomic approach to identify new EDS1 pathway components. Together with PHYTOALEXIN-DEFICIENT4 (PAD4), a known EDS1 interactor, SAG101 contributes intrinsic and indispensable signaling activity to EDS1-dependent resistance. The combined activities of SAG101 and PAD4 are necessary for programmed cell death triggered by the Toll-Interleukin-1 Receptor type of nucleotide binding/leucine-rich repeat immune receptor in response to avirulent pathogen isolates and in restricting the growth of normally virulent pathogens. We further demonstrate by a combination of cell fractionation, coimmunoprecipitation, and fluorescence resonance energy transfer experiments the existence of an EDS1-SAG101 complex inside the nucleus that is molecularly and spatially distinct from EDS1-PAD4 associations in the nucleus and cytoplasm. By contrast, EDS1 homomeric interactions were detected in the cytoplasm but not inside the nucleus. These data, combined with evidence for coregulation between individual EDS1 complexes, suggest that dynamic interactions of EDS1 and its signaling partners in multiple cell compartments are important for plant defense signal relay.
        
Title: Plant immunity: the EDS1 regulatory node Wiermer M, Feys BJ, Parker JE Ref: Curr Opin Plant Biol, 8:383, 2005 : PubMed
ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and its interacting partner, PHYTOALEXIN DEFICIENT 4 (PAD4), constitute a regulatory hub that is essential for basal resistance to invasive biotrophic and hemi-biotrophic pathogens. EDS1 and PAD4 are also recruited by Toll-Interleukin-1 receptor (TIR)-type nucleotide binding-leucine rich repeat (NB-LRR) proteins to signal isolate-specific pathogen recognition. Recent work points to a fundamental role of EDS1 and PAD4 in transducing redox signals in response to certain biotic and abiotic stresses. These intracellular proteins are important activators of salicylic acid (SA) signaling and also mediate antagonism between the jasmonic acid (JA) and ethylene (ET) defense response pathways. EDS1 forms several molecularly and spatially distinct complexes with PAD4 and a newly discovered in vivo signaling partner, SENESCENCE ASSOCIATED GENE 101 (SAG101). Together, EDS1, PAD4 and SAG101 provide a major barrier to infection by both host-adapted and non-host pathogens.
        
Title: Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4 Feys BJ, Moisan LJ, Newman MA, Parker JE Ref: EMBO Journal, 20:5400, 2001 : PubMed
The Arabidopsis EDS1 and PAD4 genes encode lipase-like proteins that function in resistance (R) gene-mediated and basal plant disease resistance. Phenotypic analysis of eds1 and pad4 null mutants shows that EDS1 and PAD4 are required for resistance conditioned by the same spectrum of R genes but fulfil distinct roles within the defence pathway. EDS1 is essential for elaboration of the plant hypersensitive response, whereas EDS1 and PAD4 are both required for accumulation of the plant defence-potentiating molecule, salicylic acid. EDS1 is necessary for pathogen-induced PAD4 mRNA accumulation, whereas mutations in PAD4 or depletion of salicylic acid only partially compromise EDS1 expression. Yeast two-hybrid analysis reveals that EDS1 can dimerize and interact with PAD4. However, EDS1 dimerization is mediated by different domains to those involved in EDS1-PAD4 association. Co-immunoprecipitation experiments show that EDS1 and PAD4 proteins interact in healthy and pathogen-challenged plant cells. We propose two functions for EDS1. The first is required early in plant defence, independently of PAD4. The second recruits PAD4 in the amplification of defences, possibly by direct EDS1-PAD4 association.
Arabidopsis thaliana is an important model system for plant biologists. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis and in 1999 the sequence of the first two chromosomes was reported. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes.
        
Title: EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases Falk A, Feys BJ, Frost LN, Jones JDG, Daniels MJ, Parker JE Ref: Proceedings of the National Academy of Sciences of the United States of America, 96:3292, 1999 : PubMed
A major class of plant disease resistance (R) genes encodes leucine-rich-repeat proteins that possess a nucleotide binding site and amino-terminal similarity to the cytoplasmic domains of the Drosophila Toll and human IL-1 receptors. In Arabidopsis thaliana, EDS1 is indispensable for the function of these R genes. The EDS1 gene was cloned by targeted transposon tagging and found to encode a protein that has similarity in its amino-terminal portion to the catalytic site of eukaryotic lipases. Thus, hydrolase activity, possibly on a lipid-based substrate, is anticipated to be central to EDS1 function. The predicted EDS1 carboxyl terminus has no significant sequence homologies, although analysis of eight defective eds1 alleles reveals it to be essential for EDS1 function. Two plant defense pathways have been defined previously that depend on salicylic acid, a phenolic compound, or jasmonic acid, a lipid-derived molecule. We examined the expression of EDS1 mRNA and marker mRNAs (PR1 and PDF1.2, respectively) for these two pathways in wild-type and eds1 mutant plants after different challenges. The results suggest that EDS1 functions upstream of salicylic acid-dependent PR1 mRNA accumulation and is not required for jasmonic acid-induced PDF1.2 mRNA expression.
        
Title: Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ Ref: Plant Cell, 8:2033, 1996 : PubMed
The interaction between Arabidopsis and the biotrophic oomycete Peronospora parasitica (downy mildew) provides an attractive model pathosystem to identify molecular components of the host that are required for genotype-specific recognition of the parasite. These components are the so-called RPP genes (for resistance to P. parasitica). Mutational analysis of the ecotype Wassilewskija (Ws-0) revealed an RPP-nonspecific locus called EDS1 (for enhanced disease susceptibility) that is required for the function of RPP genes on chromosomes 3 (RPP1/RPP14 and RPP10) and 4 (RPP12). Genetic analyses demonstrated that the eds1 mutation is recessive and is not a defective allele of any known RPP gene, mapping to the bottom arm of chromosome 3 (approximately 13 centimorgans below RPP1/RPP14). Phenotypically, the Ws-eds1 mutant seedlings supported heavy sporulation by P. parasitica isolates that are each diagnostic for one of the RPP genes in wild-type Ws-0; none of the isolates is capable of sporulating on wild-type Ws-0. Ws-eds1 seedlings exhibited enhanced susceptibility to some P. parasitica isolates when compared with a compatible wild-type ecotype, Columbia, and the eds1 parental ecotype, Ws-0. This was observed as earlier initiation of sporulation and elevated production of conidiosporangia. Surprisingly, cotyledons of Ws-eds1 also supported low sporulation by five isolates of P. parasitica from Brassica oleracea. These isolates were unable to sporulate on > 100 ecotypes of Arabidopsis, including wild-type Ws-0. An isolate of Albugo candida (white blister) from B. oleracea also sporulated on Ws-eds1, but the mutant exhibited no alteration in phenotype when inoculated with several oomycete isolates from other host species. The bacterial resistance gene RPM1, conferring specific recognition of the avirulence gene avrB from Pseudomonas syringae pv glycinea, was not compromised in Ws-eds1 plants. The mutant also retained full responsiveness to the chemical inducer of systemic acquired resistance, 2,6-dichloroisonicotinic acid; Ws-eds1 seedlings treated with 2,6-dichloroisonicotinic acid became resistant to the Ws-0-compatible and Ws-0-incompatible P. parasitica isolates Emwa1 and Noco2, respectively. In summary, the EDS1 gene appears to be a necessary component of the resistance response specified by several RPP genes and is likely to function upstream from the convergence of disease resistance pathways in Arabidopsis.