Aspergillus luchuensis; Aspergillus awamori AlAXEA Acetylxylan esterase A Feruloyl esterase B
Comment
A. luchuensis, A. kawachii A. acidus and A. awamori are the same species, and A. luchuensis is selected as the correct name based on priority (Hong et al. 2013). Other strains: Aspergillus luchuensis CBS 106.47; Aspergillus kawachii (strain NBRC 4308) (White koji mold) (Aspergillus awamori var. kawachi) There are some differences in the sequences for the different entries. The sequence here is from the structure 5X6S
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Pezizomycotina: NE > leotiomyceta: NE > Eurotiomycetes: NE > Eurotiomycetidae: NE > Eurotiales: NE > Aspergillaceae: NE > Aspergillus: NE > Aspergillus luchuensis: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Aspergillus niger var. awamorii: N, E.
Aspergillus awamori: N, E.
Aspergillus luchuensis CBS 106.47: N, E.
Aspergillus kawachii IFO 4308: N, E.
Molecular evidence
Database
No mutation 1 structure: 5X6S: Crystal structure Aspergillus luchuensis Acetylxylan esterase A No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA SGSLQQVTDFGDNPTNVGMYIYVPNNLASNPGIVVAIHYCTGTGPGYYGD SPYATLSEQYGFIVIYPSSPYSGGCWDVSSQATLTHNGGGNSNSIANMVT WTISKYGADSSKVFVTGSSSGAMMTNVMAATYPELFAAATVYSGVSAGCF YSNTNQVDGWNSTCAQGDVITTPEHWASIAEAMYSGYSGSRPRMQIYHGS IDTTLYPQNYYETCKQWAGVFGYDYSAPEKTEANTPQTNYETTIWGDSLQ GIFATGVGHTVPIHGDKDMEWFGFA
We cloned the feruloyl esterase A gene from Aspergillus awamori (AwfaeA) and engineered it to study substrate specificity and pH dependence of catalysis. Based on the crystal structures of two type-A feruloyl esterases (FAE-III and AnFAEA) from Aspergillus niger, residues located in the flap region of AwFAEA (Asp71, Thr72, Asp77, and Tyr80) were replaced with corresponding amino acid residues (Ile, Arg, Asn, and Phe), respectively, found in the lid of lipases from Rhizomucor miehei (RmLIP) and Humicola lanuginose (HlLIP). Furthermore, Asp77 of AwFAEA, which is conserved in Aspergillus FAEs and lipases, was replaced with a hydrophobic residue (Ile). Kinetic analysis of the mutant enzymes showed that the higher catalytic efficiency of the D77I and Y80F mutants toward alpha-naphthylbutyrate (C4) and alpha-naphthylcaprylate (C8), respectively, was due to a lower K(m) value. The higher catalytic efficiency of D77N toward C4 substrate was due to a combination of decreased K(m) and considerably increased k(cat). The D71I and Y80F mutants showed some activity toward long-acyl chain esters. On the other hand, the D77I mutant had no detectable activity toward phenolic acid methyl esters and feruloylated arabinoxylan. Moreover, the pH optima of the D77I, D77N, and Y80F mutants increased from 5.0 to 7.0-8.0, 7.0, and 6.0, respectively.
        
Title: Biochemical characterization of recombinant acetyl xylan esterase from Aspergillus awamori expressed in Pichia pastoris: mutational analysis of catalytic residues Koseki T, Miwa Y, Fushinobu S, Hashizume K Ref: Biochimica & Biophysica Acta, 1749:7, 2005 : PubMed
We engineered an acetyl xylan esterase (AwaxeA) gene from Aspergillus awamori into a heterologous expression system in Pichia pastoris. Purified recombinant AwAXEA (rAwAXEA) displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. Putative catalytic residues, Ser(119), Ser(146), Asp(168) and Asp(202), were substituted for alanine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the four mutant enzymes were examined. The S119A and D202A mutant enzymes were catalytically inactive, whereas S146A and D168A mutants displayed significant hydrolytic activity. These observations indicate that Ser(119) and Asp(202) are important for catalysis. The S146A mutant enzyme showed lower specific activity toward the C2 substrate and higher thermal stability than wild-type enzyme. The lower activity of S146A was due to a combination of increased K(m) and decreased k(cat). The catalytic efficiency of S146A was 41% lower than that of wild-type enzyme. The synthesis of ethyl acetate was >10-fold than that of ethyl n-hexanoate synthesis for the wild-type, S146A and D168A mutant enzymes. However, the D202A showed greater synthetic activity of ethyl n-hexanoate as compared with the wild-type and other mutants.
        
Title: An Aspergillus awamori acetylesterase: purification of the enzyme, and cloning and sequencing of the gene Koseki T, Furuse S, Iwano K, Sakai H, Matsuzawa H Ref: Biochemical Journal, 326 ( Pt 2):485, 1997 : PubMed
An inducible acetylesterase was purified from the culture medium of Aspergillus awamori strain IFO4033 growing on wheat-bran culture by ion-exchange, gel-filtration and hydrophobic-interaction chromatographies. The purified enzyme had an Mr of 31000 and contained Asn-linked oligosaccharides. The enzyme liberated acetic acid from wheat bran, hydrolysed only alpha-naphthyl acetate and propionate when aromatic esters were used for the substrate, and was tentatively classified as a carboxylic esterase (EC 3.1.1.1). The gene encoding acetylesterase was cloned and sequenced. The deduced amino acid sequence showed that acetylesterase was produced as a 304-amino-acid-residue precursor, which was converted post-translationally into a 275-amino-acid-residue mature protein. Part of the sequence of acetylesterase was similar to the region near the active-site serine of lipases of Geotrichum candidum and Candida cylindracea. A unique site of putative Asn-linked oligosaccharides was presented.
Acetyl xylan esterase (AXE) catalyzes the hydrolysis of the acetyl bonds present in plant cell wall polysaccharides. Here, we determined the crystal structure of AXE from Aspergillus luchuensis (AlAXEA), providing the three-dimensional structure of an enzyme in the Esterase_phb family. AlAXEA shares its core alpha/beta-hydrolase fold structure with esterases in other families, but it has an extended central beta-sheet at both its ends and an extra loop. Structural comparison with a ferulic acid esterase (FAE) from Aspergillus niger indicated that AlAXEA has a conserved catalytic machinery: a catalytic triad (Ser119, His259, and Asp202) and an oxyanion hole (Cys40 and Ser120). Near the catalytic triad of AlAXEA, two aromatic residues (Tyr39 and Trp160) form small pockets at both sides. Homology models of fungal FAEs in the same Esterase_phb family have wide pockets at the corresponding sites because they have residues with smaller side chains (Pro, Ser, and Gly). Mutants with site-directed mutations at Tyr39 showed a substrate specificity similar to that of the wild-type enzyme, whereas those with mutations at Trp160 acquired an expanded substrate specificity. Interestingly, the Trp160 mutants acquired weak but significant type B-like FAE activity. Moreover, the engineered enzymes exhibited ferulic acid-releasing activity from wheat arabinoxylan.IMPORTANCE Hemicelluloses in the plant cell wall are often decorated by acetyl and ferulic acid groups. Therefore, complete and efficient degradation of plant polysaccharides requires the enzymes for cleaving the side chains of the polymer. Since the Esterase_phb family contains a wide array of fungal FAEs and AXEs from fungi and bacteria, our study will provide a structural basis for the molecular mechanism of these industrially relevant enzymes in biopolymer degradation. The structure of the Esterase_phb family also provides information for bacterial polyhydroxyalkanoate depolymerases that are involved in biodegradation of thermoplastic polymers.
Aspergilli known as black- and white-koji molds which are used for awamori, shochu, makgeolli and other food and beverage fermentations, are reported in the literature as A. luchuensis, A. awamori, A. kawachii, or A. acidus. In order to elucidate the taxonomic position of these species, available ex-type cultures were compared based on morphology and molecular characters. A. luchuensis, A. kawachii and A. acidus showed the same banding patterns in RAPD, and the three species had the same rDNA-ITS, beta-tubulin and calmodulin sequences and these differed from those of the closely related A. niger and A. tubingensis. Morphologically, the three species are not significantly different from each other or from A. niger and A. tubingensis. It is concluded that A. luchuensis, A. kawachii and A. acidus are the same species, and A. luchuensis is selected as the correct name based on priority. Strains of A. awamori which are stored in National Research Institute of Brewing in Japan, represent A. niger (n = 14) and A. luchuensis (n = 6). The neotype of A. awamori (CBS 557.65 = NRRL 4948) does not originate from awamori fermentation and it is shown to be identical with the unknown taxon Aspergillus welwitschiae. Extrolite analysis of strains of A. luchuensis showed that they do not produce mycotoxins and therefore can be considered safe for food and beverage fermentations. A. luchuensis is also frequently isolated from meju and nuruk in Korea and Puerh tea in China and the species is probably common in the fermentation environment of East Asia. A re-description of A. luchuensis is provided because the incomplete data in the original literature.
The filamentous fungus Aspergillus kawachii has traditionally been used for brewing the Japanese distilled spirit shochu. A. kawachii characteristically hyperproduces citric acid and a variety of polysaccharide glycoside hydrolases. Here the genome sequence of A. kawachii IFO 4308 was determined and annotated. Analysis of the sequence may provide insight into the properties of this fungus that make it superior for use in shochu production, leading to the further development of A. kawachii for industrial applications.
We cloned the feruloyl esterase A gene from Aspergillus awamori (AwfaeA) and engineered it to study substrate specificity and pH dependence of catalysis. Based on the crystal structures of two type-A feruloyl esterases (FAE-III and AnFAEA) from Aspergillus niger, residues located in the flap region of AwFAEA (Asp71, Thr72, Asp77, and Tyr80) were replaced with corresponding amino acid residues (Ile, Arg, Asn, and Phe), respectively, found in the lid of lipases from Rhizomucor miehei (RmLIP) and Humicola lanuginose (HlLIP). Furthermore, Asp77 of AwFAEA, which is conserved in Aspergillus FAEs and lipases, was replaced with a hydrophobic residue (Ile). Kinetic analysis of the mutant enzymes showed that the higher catalytic efficiency of the D77I and Y80F mutants toward alpha-naphthylbutyrate (C4) and alpha-naphthylcaprylate (C8), respectively, was due to a lower K(m) value. The higher catalytic efficiency of D77N toward C4 substrate was due to a combination of decreased K(m) and considerably increased k(cat). The D71I and Y80F mutants showed some activity toward long-acyl chain esters. On the other hand, the D77I mutant had no detectable activity toward phenolic acid methyl esters and feruloylated arabinoxylan. Moreover, the pH optima of the D77I, D77N, and Y80F mutants increased from 5.0 to 7.0-8.0, 7.0, and 6.0, respectively.
        
Title: Biochemical characterization of recombinant acetyl xylan esterase from Aspergillus awamori expressed in Pichia pastoris: mutational analysis of catalytic residues Koseki T, Miwa Y, Fushinobu S, Hashizume K Ref: Biochimica & Biophysica Acta, 1749:7, 2005 : PubMed
We engineered an acetyl xylan esterase (AwaxeA) gene from Aspergillus awamori into a heterologous expression system in Pichia pastoris. Purified recombinant AwAXEA (rAwAXEA) displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. Putative catalytic residues, Ser(119), Ser(146), Asp(168) and Asp(202), were substituted for alanine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the four mutant enzymes were examined. The S119A and D202A mutant enzymes were catalytically inactive, whereas S146A and D168A mutants displayed significant hydrolytic activity. These observations indicate that Ser(119) and Asp(202) are important for catalysis. The S146A mutant enzyme showed lower specific activity toward the C2 substrate and higher thermal stability than wild-type enzyme. The lower activity of S146A was due to a combination of increased K(m) and decreased k(cat). The catalytic efficiency of S146A was 41% lower than that of wild-type enzyme. The synthesis of ethyl acetate was >10-fold than that of ethyl n-hexanoate synthesis for the wild-type, S146A and D168A mutant enzymes. However, the D202A showed greater synthetic activity of ethyl n-hexanoate as compared with the wild-type and other mutants.
        
Title: An Aspergillus awamori acetylesterase: purification of the enzyme, and cloning and sequencing of the gene Koseki T, Furuse S, Iwano K, Sakai H, Matsuzawa H Ref: Biochemical Journal, 326 ( Pt 2):485, 1997 : PubMed
An inducible acetylesterase was purified from the culture medium of Aspergillus awamori strain IFO4033 growing on wheat-bran culture by ion-exchange, gel-filtration and hydrophobic-interaction chromatographies. The purified enzyme had an Mr of 31000 and contained Asn-linked oligosaccharides. The enzyme liberated acetic acid from wheat bran, hydrolysed only alpha-naphthyl acetate and propionate when aromatic esters were used for the substrate, and was tentatively classified as a carboxylic esterase (EC 3.1.1.1). The gene encoding acetylesterase was cloned and sequenced. The deduced amino acid sequence showed that acetylesterase was produced as a 304-amino-acid-residue precursor, which was converted post-translationally into a 275-amino-acid-residue mature protein. Part of the sequence of acetylesterase was similar to the region near the active-site serine of lipases of Geotrichum candidum and Candida cylindracea. A unique site of putative Asn-linked oligosaccharides was presented.