Aspergillus oryzae (Yellow koji mold), Aspergillus flavus, CutL1 gene for cutinase cutinase 1 precursor (EC 3.1.1.74) (cutin hydrolase 1) (l1)
Comment
Aspergillus oryzae grown in a liquid medium containing the polyester polybutylene succinate co-adipate (PBSA), produces RolA, a hydrophobin, and CutL1, a PBSA-degrading cutinase. Secreted RolA attaches to PBSA particles and recruits CutL1, which stimulates the hydrolysis of PBSA. Asp142, Asp171, Glu31 and Asp30 are involved in the ionic interaction with RolA CutL1 (Takahashi et al.2015, Terauchi 2017). Structures of CutL alone or in complex with paraoxon were solved(Liu et al. 2009). Other strains: Aspergillus oryzae (strain ATCC 42149 / RIB 40) (Yellow koji mold), Aspergillus flavus (strain ATCC 200026/FGSC A1120/NRRL 3357/JC12722/SRRC 167)
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Pezizomycotina: NE > leotiomyceta: NE > Eurotiomycetes: NE > Eurotiomycetidae: NE > Eurotiales: NE > Aspergillaceae: NE > Aspergillus: NE > Aspergillus oryzae: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Aspergillus oryzae 3.042: N, E.
Aspergillus oryzae RIB40: N, E.
Aspergillus oryzae 100-8: N, E.
Aspergillus flavus NRRL3357: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MHLRNIVIALAATAVASPVDLQDRQLTGGDELRDGPCKPITFIFARASTE PGLLGISTGPAVCNRLKLARSGDVACQGVGPRYTADLPSNALPEGTSQAA IAEAQGLFEQAVSKCPDTQIVAGGYSQGTAVMNGAIKRLSADVQDKIKGV VLFGYTRNAQERGQIANFPKDKVKVYCAVGDLVCLGTLIVAPPHFSYLSD TGDASDFLLSQLG
Aspergillus oryzae hydrophobin RolA adheres to the biodegradable polyester polybutylene succinate-co-adipate (PBSA) and promotes PBSA degradation by interacting with A. oryzae polyesterase CutL1 and recruiting it to the PBSA surface. In our previous studies, we found that positively charged amino acid residues (H32, K34) of RolA and negatively charged residues (E31, D142, D171) of CutL1 are important for the cooperative ionic interaction between RolA and CutL1, but some other charged residues in the triple mutant CutL1-E31S/D142S/D171S are also involved. In the present study, on the basis of the 3D-structure of CutL1, we hypothesized that D30 is also involved in the CutL1-RolA interaction. We substituted D30 with serine and performed kinetic analysis of the interaction between wild-type RolA and the single mutant CutL1-D30S or quadruple mutant CutL1-D30S/E31S/D142S/D171S by using quartz crystal microbalance. Our results indicate that D30 is a novel residue involved in the ionic interaction between RolA and CutL1.
Hydrophobins are amphipathic proteins secreted by filamentous fungi. When the industrial fungus Aspergillus oryzae is grown in a liquid medium containing the polyester polybutylene succinate co-adipate (PBSA), it produces RolA, a hydrophobin, and CutL1, a PBSA-degrading cutinase. Secreted RolA attaches to the surface of the PBSA particles and recruits CutL1, which then condenses on the particles and stimulates the hydrolysis of PBSA. Here, we identified amino acid residues that are required for the RolA-CutL1 interaction by using site-directed mutagenesis. We quantitatively analyzed kinetic profiles of the interactions between RolA variants and CutL1 variants by using a quartz crystal microbalance (QCM). The QCM analyses revealed that Asp142, Asp171 and Glu31, located on the hydrophilic molecular surface of CutL1, and His32 and Lys34, located in the N-terminus of RolA, play crucial roles in the RolA-CutL1 interaction via ionic interactions. RolA immobilized on a QCM electrode strongly interacted with CutL1 (KD = 6.5 nM); however, RolA with CutL1 variants, or RolA variants with CutL1, showed markedly larger KD values, particularly in the interaction between the double variant RolA-H32S/K34S and the triple variant CutL1-E31S/D142S/D171S (KD = 78.0 nM). We discuss a molecular prototype model of hydrophobin-based enzyme recruitment at the solid-water interface.
Cutinases are responsible for hydrolysis of the protective cutin lipid polyester matrix in plants and thus have been exploited for hydrolysis of small molecule esters and polyesters. Here we explore the reactivity, stability, and structure of Aspergillus oryzae cutinase and compare it to the well-studied enzyme from Fusarium solani. Two critical differences are highlighted in the crystallographic analysis of the A. oryzae structure: (i) an additional disulfide bond and (ii) a topologically favored catalytic triad with a continuous and deep groove. These structural features of A. oryzae cutinase are proposed to result in an improved hydrolytic activity and altered substrate specificity profile, enhanced thermostability, and remarkable reactivity toward the degradation of the synthetic polyester polycaprolactone. The results presented here provide insight into engineering new cutinase-inspired biocatalysts with tailor-made properties.
Aspergillus oryzae hydrophobin RolA adheres to the biodegradable polyester polybutylene succinate-co-adipate (PBSA) and promotes PBSA degradation by interacting with A. oryzae polyesterase CutL1 and recruiting it to the PBSA surface. In our previous studies, we found that positively charged amino acid residues (H32, K34) of RolA and negatively charged residues (E31, D142, D171) of CutL1 are important for the cooperative ionic interaction between RolA and CutL1, but some other charged residues in the triple mutant CutL1-E31S/D142S/D171S are also involved. In the present study, on the basis of the 3D-structure of CutL1, we hypothesized that D30 is also involved in the CutL1-RolA interaction. We substituted D30 with serine and performed kinetic analysis of the interaction between wild-type RolA and the single mutant CutL1-D30S or quadruple mutant CutL1-D30S/E31S/D142S/D171S by using quartz crystal microbalance. Our results indicate that D30 is a novel residue involved in the ionic interaction between RolA and CutL1.
Cutinases are powerful hydrolases that can cleave ester bonds of polyesters such as poly(ethylene terephthalate) (PET), opening up new options for enzymatic routes for polymer recycling and surface modification reactions. Cutinase from Aspergillus oryzae (AoC) is promising owing to the presence of an extended groove near the catalytic triad which is important for the orientation of polymeric chains. However, the catalytic efficiency of AoC on rigid polymers like PET is limited by its low thermostability; as it is essential to work at or over the glass transition temperature (Tg ) of PET, that is, 70 degrees C. Consequently, in this study we worked toward the thermostabilization of AoC. Use of Rosetta computational protein design software in conjunction with rational design led to a 6 degrees C improvement in the thermal unfolding temperature (Tm ) and a 10-fold increase in the half-life of the enzyme activity at 60 degrees C. Surprisingly, thermostabilization did not improve the rate or temperature optimum of enzyme activity. Three notable findings are presented as steps toward designing more thermophilic cutinase: (a) surface salt bridge optimization produced enthalpic stabilization, (b) mutations to proline reduced the entropy loss upon folding, and (c) the lack of a correlative increase in the temperature optimum of catalytic activity with thermodynamic stability suggests that the active site is locally denatured at a temperature below the Tm of the global structure. Proteins 2016; 84:60-72. (c) 2015 Wiley Periodicals, Inc.
Hydrophobins are amphipathic proteins secreted by filamentous fungi. When the industrial fungus Aspergillus oryzae is grown in a liquid medium containing the polyester polybutylene succinate co-adipate (PBSA), it produces RolA, a hydrophobin, and CutL1, a PBSA-degrading cutinase. Secreted RolA attaches to the surface of the PBSA particles and recruits CutL1, which then condenses on the particles and stimulates the hydrolysis of PBSA. Here, we identified amino acid residues that are required for the RolA-CutL1 interaction by using site-directed mutagenesis. We quantitatively analyzed kinetic profiles of the interactions between RolA variants and CutL1 variants by using a quartz crystal microbalance (QCM). The QCM analyses revealed that Asp142, Asp171 and Glu31, located on the hydrophilic molecular surface of CutL1, and His32 and Lys34, located in the N-terminus of RolA, play crucial roles in the RolA-CutL1 interaction via ionic interactions. RolA immobilized on a QCM electrode strongly interacted with CutL1 (KD = 6.5 nM); however, RolA with CutL1 variants, or RolA variants with CutL1, showed markedly larger KD values, particularly in the interaction between the double variant RolA-H32S/K34S and the triple variant CutL1-E31S/D142S/D171S (KD = 78.0 nM). We discuss a molecular prototype model of hydrophobin-based enzyme recruitment at the solid-water interface.
Cutinases are responsible for hydrolysis of the protective cutin lipid polyester matrix in plants and thus have been exploited for hydrolysis of small molecule esters and polyesters. Here we explore the reactivity, stability, and structure of Aspergillus oryzae cutinase and compare it to the well-studied enzyme from Fusarium solani. Two critical differences are highlighted in the crystallographic analysis of the A. oryzae structure: (i) an additional disulfide bond and (ii) a topologically favored catalytic triad with a continuous and deep groove. These structural features of A. oryzae cutinase are proposed to result in an improved hydrolytic activity and altered substrate specificity profile, enhanced thermostability, and remarkable reactivity toward the degradation of the synthetic polyester polycaprolactone. The results presented here provide insight into engineering new cutinase-inspired biocatalysts with tailor-made properties.
The genome of Aspergillus oryzae, a fungus important for the production of traditional fermented foods and beverages in Japan, has been sequenced. The ability to secrete large amounts of proteins and the development of a transformation system have facilitated the use of A. oryzae in modern biotechnology. Although both A. oryzae and Aspergillus flavus belong to the section Flavi of the subgenus Circumdati of Aspergillus, A. oryzae, unlike A. flavus, does not produce aflatoxin, and its long history of use in the food industry has proved its safety. Here we show that the 37-megabase (Mb) genome of A. oryzae contains 12,074 genes and is expanded by 7-9 Mb in comparison with the genomes of Aspergillus nidulans and Aspergillus fumigatus. Comparison of the three aspergilli species revealed the presence of syntenic blocks and A. oryzae-specific blocks (lacking synteny with A. nidulans and A. fumigatus) in a mosaic manner throughout the genome of A. oryzae. The blocks of A. oryzae-specific sequence are enriched for genes involved in metabolism, particularly those for the synthesis of secondary metabolites. Specific expansion of genes for secretory hydrolytic enzymes, amino acid metabolism and amino acid/sugar uptake transporters supports the idea that A. oryzae is an ideal microorganism for fermentation.
We used biodegradable plastics as fermentation substrates for the filamentous fungus Aspergillus oryzae. This fungus could grow under culture conditions that contained emulsified poly-(butylene succinate) (PBS) and emulsified poly-(butylene succinate-co-adipate) (PBSA) as the sole carbon source, and could digest PBS and PBSA, as indicated by clearing of the culture supernatant. We purified the PBS-degrading enzyme from the culture supernatant, and its molecular mass was determined as 21.6 kDa. The enzyme was identified as cutinase based on internal amino acid sequences. Specific activities against PBS, PBSA and poly-(lactic acid) (PLA) were determined as 0.42 U/mg, 11 U/mg and 0.067 U/mg, respectively. To obtain a better understanding of how the enzyme recognizes and hydrolyzes PBS/PBSA, we investigated the environment of the catalytic pocket, which is divided into carboxylic acid and alcohol recognition sites. The affinities for different substrates depended on the carbon chain length of the carboxylic acid in the substrate. Competitive inhibition modes were exhibited by carboxylic acids and alcohols that consisted of C4-C6 and C3-C8 chain lengths, respectively. Determination of the affinities for different chemicals indicated that the most preferred substrate for the enzyme would consist of butyric acid and n-hexanol.
When fungi grow on plant or insect surfaces coated with wax polyesters that protect against pathogens, the fungi generally form aerial hyphae to contact the surfaces. Aerial structures such as hyphae and conidiophores are coated with hydrophobins, which are surface-active proteins involved in adhesion to hydrophobic surfaces. When the industrial fungus Aspergillus oryzae was cultivated in a liquid medium containing the biodegradable polyester polybutylene succinate-coadipate (PBSA), the rolA gene encoding hydrophobin RolA was highly transcribed. High levels of RolA and its localization on the cell surface in the presence of PBSA were confirmed by immunostaining. Under these conditions, A. oryzae simultaneously produced the cutinase CutL1, which hydrolyses PBSA. Pre-incubation of PBSA with RolA stimulated PBSA degradation by CutL1, suggesting that RolA bound to the PBSA surface was required for the stimulation. Immunostaining revealed that PBSA films coated with RolA specifically adsorbed CutL1. Quartz crystal microbalance analyses further demonstrated that RolA attached to a hydrophobic sensor chip specifically adsorbed CutL1. Circular dichroism spectra of soluble-state RolA and bound RolA suggested that RolA underwent a conformational change after its adsorption to hydrophobic surfaces. These results suggest that RolA adsorbed to the hydrophobic surface of PBSA recruits CutL1, resulting in condensation of CutL1 on the PBSA surface and consequent stimulation of PBSA hydrolysis. A fluorescence recovery after photobleaching experiment on PBSA films coated with FITC-labelled RolA suggested that RolA moves laterally on the film. We discuss the novel molecular functions of RolA with regard to plastic degradation.
        
Title: Genome structure and nucleotide sequence of a lipolytic enzyme gene of Aspergillus oryzae Ohnishi K, Toida J, Nakazawa H, Sekiguchi J Ref: FEMS Microbiology Letters, 126:145, 1995 : PubMed
Aspergillus oryzae, which is widely used for Japanese traditional fermentation, produced at least two lipolytic enzymes (L1 and L2). Southern hybridization analysis of restriction enzyme-digested genomic DNA fragments of Aspergillus oryzae with 23-mer oligonucleotides synthesized according to the amino acid sequence of the enzyme L1 as probes suggested that there is single copy of the L1 gene in the genome. DNA fragments containing the L1 gene were cloned in Escherichia coli. Nucleotide sequencing of the DNA fragments revealed an open reading frame consisting of 213 amino acid residues. It had three putative introns whose sizes were 52 bp, 48 bp and 53 bp, respectively. Putative CAAT and TATA boxes were found at positions -147 and -100 from A (+1) of the translational initiation codon, and a polyadenylation site at 158 bp downstream of the stop codon. The deduced amino acid sequence of the L1 gene was highly similar to those of cutinases from phytopathogenic fungi. Thus, it is interesting to note that the non-phytopathogenic fungus, A. oryzae, produces cutinase, which seems to play an important role in flavor formation.