(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Firmicutes: NE > Bacilli: NE > Bacillales: NE > Bacillaceae: NE > Bacillus: NE > Bacillus cereus group: NE > Bacillus anthracis: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Bacillus thuringiensis serovar konkukian: N, E.
Bacillus thuringiensis subsp. konkukian: N, E.
Bacillus thuringiensis serovar konkukian str. 97-27: N, E.
Bacillus cereus ATCC 10987: N, E.
Bacillus anthracis str. Ames: N, E.
Bacillus thuringiensis str. Al Hakam: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MIKPATMEFVSLSNGETIAYQEVGRQNAEILVLIHGNMTSSQHFDLVIEK LQDQYHIYALDLRGFGQSTYNKAIDSIQDFAEDVKLFIDGLKLEKFSLMG WSMGGGVAMQFTANHPTFVEKLILVESVGMKGYPIFKKDINGQPIVSSLV KTKEEIAQDPVQIAPVLDAIKNMNKLYYRTVWNLLIYTHNQPEPDRYEKY LDDMLTQRNFVDVNYALITFNISDEHNGVVEGNKQIHRIKAPTLVIQGDR DYVVPQVVGEELVKHLPNAELQLLEDCGHSPFIDCLDVFIKHVEDWLEGK
Bacillus thuringiensis is an insect pathogen that is widely used as a biopesticide (E. Schnepf, N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean, Microbiol. Mol. Biol. Rev. 62:775-806, 1998). Here we report the finished, annotated genome sequence of B. thuringiensis Al Hakam, which was collected in Iraq by the United Nations Special Commission (L. Radnedge, P. Agron, K. Hill, P. Jackson, L. Ticknor, P. Keim, and G. Andersen, Appl. Environ. Microbiol. 69:2755-2764, 2003).
We sequenced the complete genome of Bacillus cereus ATCC 10987, a non-lethal dairy isolate in the same genetic subgroup as Bacillus anthracis. Comparison of the chromosomes demonstrated that B.cereus ATCC 10987 was more similar to B.anthracis Ames than B.cereus ATCC 14579, while containing a number of unique metabolic capabilities such as urease and xylose utilization and lacking the ability to utilize nitrate and nitrite. Additionally, genetic mechanisms for variation of capsule carbohydrate and flagella surface structures were identified. Bacillus cereus ATCC 10987 contains a single large plasmid (pBc10987), of approximately 208 kb, that is similar in gene content and organization to B.anthracis pXO1 but is lacking the pathogenicity-associated island containing the anthrax lethal and edema toxin complex genes. The chromosomal similarity of B.cereus ATCC 10987 to B.anthracis Ames, as well as the fact that it contains a large pXO1-like plasmid, may make it a possible model for studying B.anthracis plasmid biology and regulatory cross-talk.
Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity--including haemolysins, phospholipases and iron acquisition functions--and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.