(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Firmicutes: NE > Bacilli: NE > Bacillales: NE > Bacillaceae: NE > Bacillus: NE > Bacillus cereus group: NE > Bacillus cereus: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Bacillus cereus ATCC 10987: N, E.
Bacillus cereus E33L: N, E.
Bacillus cereus AH1271: N, E.
Bacillus cereus NVH0597-99: N, E.
Bacillus cereus AH820: N, E.
Bacillus cereus 03BB108: N, E.
Bacillus cereus 03BB102: N, E.
Bacillus thuringiensis serovar konkukian: N, E.
Bacillus thuringiensis subsp. konkukian: N, E.
Bacillus thuringiensis serovar konkukian str. 97-27: N, E.
Bacillus cereus G9241: N, E.
Bacillus anthracis str. Ames: N, E.
Bacillus thuringiensis str. Al Hakam: N, E.
Bacillus anthracis str. A0442: N, E.
Bacillus anthracis str. A0389: N, E.
Bacillus anthracis Tsiankovskii-I: N, E.
Bacillus anthracis str. Tsiankovskii-I: N, E.
Bacillus anthracis str. A0488: N, E.
Bacillus anthracis str. A0193: N, E.
Bacillus anthracis str. CDC 684: N, E.
Bacillus anthracis str. A0465: N, E.
Bacillus anthracis str. A0174: N, E.
Bacillus anthracis str. A0248: N, E.
Bacillus cereus ATCC 4342: N, E.
Bacillus cereus H3081.97: N, E.
Bacillus cereus AH187: N, E.
Bacillus cereus Q1: N, E.
Bacillus cereus ATCC 14579: N, E.
Bacillus thuringiensis serovar israelensis ATCC 35646: N, E.
Bacillus cereus AH1273: N, E.
Bacillus cereus AH1272: N, E.
Bacillus cereus AH603: N, E.
Bacillus cereus AH621: N, E.
Bacillus cereus BDRD-ST196: N, E.
Bacillus weihenstephanensis KBAB4: N, E.
Bacillus mycoides DSM 2048: N, E.
Bacillus cereus Rock1-3: N, E.
Bacillus cereus AH1134: N, E.
Bacillus cereus ATCC 10876: N, E.
Bacillus cereus BDRD-ST24: N, E.
Bacillus cereus m1550: N, E.
Bacillus cereus B4264: N, E.
Bacillus cereus BDRD-Cer4: N, E.
Bacillus thuringiensis IBL 4222: N, E.
Bacillus cereus 172560W: N, E.
Bacillus thuringiensis IBL 200: N, E.
Bacillus cereus AH676: N, E.
Bacillus cereus Rock1-15: N, E.
Bacillus thuringiensis serovar thuringiensis str. T01001: N, E.
Bacillus thuringiensis Bt407: N, E.
Bacillus thuringiensis serovar berliner ATCC 10792: N, E.
Bacillus thuringiensis serovar sotto str. T04001: N, E.
Bacillus cereus G9842: N, E.
Bacillus thuringiensis serovar huazhongensis BGSC 4BD1: N, E.
Bacillus thuringiensis serovar pakistani str. T13001: N, E.
Bacillus thuringiensis serovar kurstaki str. T03a001: N, E.
Bacillus cereus Rock4-2: N, E.
Bacillus cereus F65185: N, E.
Bacillus thuringiensis serovar pondicheriensis BGSC 4BA1: N, E.
Bacillus cereus Rock3-42: N, E.
Bacillus thuringiensis serovar andalousiensis BGSC 4AW1: N, E.
Bacillus cereus m1293: N, E.
Bacillus thuringiensis serovar tochigiensis BGSC 4Y1: N, E.
Bacillus cereus BDRD-ST26: N, E.
Bacillus thuringiensis serovar monterrey BGSC 4AJ1: N, E.
Bacillus thuringiensis serovar finitimus YBT-020: N, E.
Bacillus cereus BGSC 6E1: N, E.
Bacillus cereus 95/8201: N, E.
Bacillus cereus MM3: N, E.
Bacillus thuringiensis serovar pulsiensis BGSC 4CC1: N, E.
Bacillus cereus R309803: N, E.
Bacillus cereus Rock3-29: N, E.
Bacillus cereus Rock3-28: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MFVTVEKDVHIFVQDVNPGPSSKTVFFFHSWPLNHQMYQYQLNVLPQHGF RCIAMDIRGNGQSDKPWTGYTYDRLADDIAIVLEALQVENATLVGFSVGG ALSIRYMSRYNGQRISKLVLIDAVSPSFVKNQESPYGVPKEQADTLINQM YANLPKFLNDLSLSFFNRNLGSATLEWFSYLGMQSASYALIKILQAAANE DVTKDLSKINVPTKIFHGIHDQLIPYKSAELTQKRIKNSQLHPLTNSGHG SPIDQADELNEELIKFLHS
Bacillus anthracis is the etiologic agent of anthrax, an acute fatal disease among mammals. It was thought to differ from Bacillus cereus, an opportunistic pathogen and cause of food poisoning, by the presence of plasmids pXO1 and pXO2, which encode the lethal toxin complex and the poly-gamma-d-glutamic acid capsule, respectively. This work describes a non-B. anthracis isolate that possesses the anthrax toxin genes and is capable of causing a severe inhalation anthrax-like illness. Although initial phenotypic and 16S rRNA analysis identified this isolate as B. cereus, the rapid generation and analysis of a high-coverage draft genome sequence revealed the presence of a circular plasmid, named pBCXO1, with 99.6% similarity with the B. anthracis toxin-encoding plasmid, pXO1. Although homologues of the pXO2 encoded capsule genes were not found, a polysaccharide capsule cluster is encoded on a second, previously unidentified plasmid, pBC218. A/J mice challenged with B. cereus G9241 confirmed the virulence of this strain. These findings represent an example of how genomics could rapidly assist public health experts responding not only to clearly identified select agents but also to novel agents with similar pathogenic potentials. In this study, we combined a public health approach with genome analysis to provide insight into the correlation of phenotypic characteristics and their genetic basis.
We sequenced the complete genome of Bacillus cereus ATCC 10987, a non-lethal dairy isolate in the same genetic subgroup as Bacillus anthracis. Comparison of the chromosomes demonstrated that B.cereus ATCC 10987 was more similar to B.anthracis Ames than B.cereus ATCC 14579, while containing a number of unique metabolic capabilities such as urease and xylose utilization and lacking the ability to utilize nitrate and nitrite. Additionally, genetic mechanisms for variation of capsule carbohydrate and flagella surface structures were identified. Bacillus cereus ATCC 10987 contains a single large plasmid (pBc10987), of approximately 208 kb, that is similar in gene content and organization to B.anthracis pXO1 but is lacking the pathogenicity-associated island containing the anthrax lethal and edema toxin complex genes. The chromosomal similarity of B.cereus ATCC 10987 to B.anthracis Ames, as well as the fact that it contains a large pXO1-like plasmid, may make it a possible model for studying B.anthracis plasmid biology and regulatory cross-talk.
Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity--including haemolysins, phospholipases and iron acquisition functions--and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.
The key genes required for Bacillus anthracis to cause anthrax have been acquired recently by horizontal gene transfer. To understand the genetic background for the evolution of B. anthracis virulence, we obtained high-redundancy genome sequences of 45 strains of the Bacillus cereus sensu lato (s.l.) species that were chosen for their genetic diversity within the species based on the existing multilocus sequence typing scheme. From the resulting data, we called more than 324,000 new genes representing more than 12,333 new gene families for this group. The core genome size for the B. cereus s.l. group was approximately 1750 genes, with another 2150 genes found in almost every genome constituting the extended core. There was a paucity of genes specific and conserved in any clade. We found no evidence of recent large-scale gene loss in B. anthracis or for unusual accumulation of nonsynonymous DNA substitutions in the chromosome; however, several B. cereus genomes isolated from soil and not previously associated with human disease were degraded to various degrees. Although B. anthracis has undergone an ecological shift within the species, its chromosome does not appear to be exceptional on a macroscopic scale compared with close relatives.
Bacillus thuringiensis is a gram-positive, spore-forming bacterium that forms parasporal crystals at the onset of the sporulation phase of its growth. Here, we report the complete genome sequence of B. thuringiensis serovar finitimus strain YBT-020, whose parasporal crystals consist of Cry26Aa and Cry28Aa crystal proteins and are located between the exosporium and the spore coat and remain adhering to the spore after sporulation.
Bacillus cereus strain Q1 was isolated from a deep-subsurface oil reservoir in the Daqing oil field in northeastern China. This strain is able to produce biosurfactants and to survive in extreme environments. Here we report the finished and annotated genome sequence of this organism.
The Bacillus cereus group represents sporulating soil bacteria containing pathogenic strains which may cause diarrheic or emetic food poisoning outbreaks. Multiple locus sequence typing revealed a presence in natural samples of these bacteria of about 30 clonal complexes. Application of genomic methods to this group was however biased due to the major interest for representatives closely related to Bacillus anthracis. Albeit the most important food-borne pathogens were not yet defined, existing data indicate that they are scattered all over the phylogenetic tree. The preliminary analysis of the sequences of three genomes discussed in this paper narrows down the gaps in our knowledge of the B. cereus group. The strain NVH391-98 is a rare but particularly severe food-borne pathogen. Sequencing revealed that the strain should be a representative of a novel bacterial species, for which the name Bacillus cytotoxis or Bacillus cytotoxicus is proposed. This strain has a reduced genome size compared to other B. cereus group strains. Genome analysis revealed absence of sigma B factor and the presence of genes encoding diarrheic Nhe toxin, not detected earlier. The strain B. cereus F837/76 represents a clonal complex close to that of B. anthracis. Including F837/76, three such B. cereus strains had been sequenced. Alignment of genomes suggests that B. anthracis is their common ancestor. Since such strains often emerge from clinical cases, they merit a special attention. The third strain, KBAB4, is a typical facultative psychrophile generally found in soil. Phylogenic studies show that in nature it is the most active group in terms of gene exchange. Genomic sequence revealed high presence of extra-chromosomal genetic material (about 530kb) that may account for this phenomenon. Genes coding Nhe-like toxin were found on a big plasmid in this strain. This may indicate a potential mechanism of toxicity spread from the psychrophile strain community. The results of this genomic work and ecological compartments of different strains incite to consider a necessity of creating prophylactic vaccines against bacteria closely related to NVH391-98 and F837/76. Presumably developing of such vaccines can be based on the properties of non-pathogenic strains such as KBAB4 or ATCC14579 reported here or earlier. By comparing the protein coding genes of strains being sequenced in this project to others we estimate the shared proteome, or core genome, in the B. cereus group to be 3000+/-200 genes and the total proteome, or pan-genome, to be 20-25,000 genes.
Bacillus thuringiensis is an insect pathogen that is widely used as a biopesticide (E. Schnepf, N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean, Microbiol. Mol. Biol. Rev. 62:775-806, 1998). Here we report the finished, annotated genome sequence of B. thuringiensis Al Hakam, which was collected in Iraq by the United Nations Special Commission (L. Radnedge, P. Agron, K. Hill, P. Jackson, L. Ticknor, P. Keim, and G. Andersen, Appl. Environ. Microbiol. 69:2755-2764, 2003).
Bacillus anthracis is the etiologic agent of anthrax, an acute fatal disease among mammals. It was thought to differ from Bacillus cereus, an opportunistic pathogen and cause of food poisoning, by the presence of plasmids pXO1 and pXO2, which encode the lethal toxin complex and the poly-gamma-d-glutamic acid capsule, respectively. This work describes a non-B. anthracis isolate that possesses the anthrax toxin genes and is capable of causing a severe inhalation anthrax-like illness. Although initial phenotypic and 16S rRNA analysis identified this isolate as B. cereus, the rapid generation and analysis of a high-coverage draft genome sequence revealed the presence of a circular plasmid, named pBCXO1, with 99.6% similarity with the B. anthracis toxin-encoding plasmid, pXO1. Although homologues of the pXO2 encoded capsule genes were not found, a polysaccharide capsule cluster is encoded on a second, previously unidentified plasmid, pBC218. A/J mice challenged with B. cereus G9241 confirmed the virulence of this strain. These findings represent an example of how genomics could rapidly assist public health experts responding not only to clearly identified select agents but also to novel agents with similar pathogenic potentials. In this study, we combined a public health approach with genome analysis to provide insight into the correlation of phenotypic characteristics and their genetic basis.
We sequenced the complete genome of Bacillus cereus ATCC 10987, a non-lethal dairy isolate in the same genetic subgroup as Bacillus anthracis. Comparison of the chromosomes demonstrated that B.cereus ATCC 10987 was more similar to B.anthracis Ames than B.cereus ATCC 14579, while containing a number of unique metabolic capabilities such as urease and xylose utilization and lacking the ability to utilize nitrate and nitrite. Additionally, genetic mechanisms for variation of capsule carbohydrate and flagella surface structures were identified. Bacillus cereus ATCC 10987 contains a single large plasmid (pBc10987), of approximately 208 kb, that is similar in gene content and organization to B.anthracis pXO1 but is lacking the pathogenicity-associated island containing the anthrax lethal and edema toxin complex genes. The chromosomal similarity of B.cereus ATCC 10987 to B.anthracis Ames, as well as the fact that it contains a large pXO1-like plasmid, may make it a possible model for studying B.anthracis plasmid biology and regulatory cross-talk.
Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity--including haemolysins, phospholipases and iron acquisition functions--and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.