(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Firmicutes: NE > Bacilli: NE > Bacillales: NE > Bacillaceae: NE > Bacillus: NE > Bacillus subtilis group: NE > Bacillus subtilis: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Bacillus subtilis subsp. spizizenii ATCC 6633: N, E.
Bacillus subtilis subsp. spizizenii: N, E.
Bacillus subtilis subsp. natto BEST195: N, E.
Bacillus subtilis subsp. spizizenii str. W23: N, E.
Bacillus subtilis BSn5: N, E.
Bacillus subtilis QH-1: N, E.
Bacillus subtilis QB928: N, E.
Bacillus subtilis subsp. subtilis str. BAB-1: N, E.
Bacillus subtilis BEST7613: N, E.
Bacillus subtilis subsp. subtilis str. SC-8: N, E.
Bacillus subtilis MB73/2: N, E.
Bacillus subtilis BEST7003: N, E.
Bacillus subtilis XF-1: N, E.
Bacillus subtilis subsp. spizizenii TU-B-10: N, E.
Bacillus subtilis subsp. subtilis str. 168: N, E.
Bacillus subtilis subsp. subtilis str. RO-NN-1: N, E.
Bacillus subtilis PY79: N, E.
Bacillus subtilis subsp. subtilis str. BSP1: N, E.
Bacillus subtilis subsp. subtilis 6051-HGW: N, E.
Bacillus subtilis subsp. subtilis str. JH642 substr. AG174: N, E.
Bacillus subtilis subsp. subtilis str. AG1839: N, E.
Bacillus subtilis subsp. subtilis str. OH 131.1: N, E.
Bacillus subtilis E1: N, E.
Bacillus subtilis TO-A: N, E.
Bacillus subtilis Miyagi-4: N, E.
Bacillus subtilis subsp. subtilis: N, E.
Bacillus subtilis subsp. niger: N, E.
Bacillus subtilis subsp. inaquosorum KCTC 13429: N, E.
Bacillus subtilis subsp. globigii: N, E.
Bacillus sp. EGD-AK10: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MIPEKKSIAIMKELSIGNTKQMLMINGVDVKNPLLLFLHGGPGTPQIGYV RHYQKELEQYFTVVHWDQRGSGLSYSKRISHHSMTINHFIKDTIQVTQWL LAHFSKSKLYLAGHSWGSILALHVLQQRPDLFYTYYGISQVVNPQDEEST AYQHIREISESKKASILSFLTRFIGAPPWKQDIQHLIYRFCVELTRGGFT HRHRQSLAVLFQMLTGNEYGVRNMHSFLNGLRFSKKHLTDELYRFNAFTS VPSIKVPCVFISGKHDLIVPAEISKQYYQELEAPEKRWFQFENSAHTPHI EEPSLFANTLSRHARNHL
BACKGROUND: Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and functions as a starter for the production of the traditional Japanese food "natto" made from soybeans. Although re-sequencing whole genomes of several laboratory domesticated B. subtilis 168 derivatives has already been attempted using short read sequencing data, the assembly of the whole genome sequence of a closely related strain, B. subtilis natto, from very short read data is more challenging, particularly with our aim to assemble one fully connected scaffold from short reads around 35 bp in length. RESULTS: We applied a comparative genome assembly method, which combines de novo assembly and reference guided assembly, to one of the B. subtilis natto strains. We successfully assembled 28 scaffolds and managed to avoid substantial fragmentation. Completion of the assembly through long PCR experiments resulted in one connected scaffold for B. subtilis natto. Based on the assembled genome sequence, our orthologous gene analysis between natto BEST195 and Marburg 168 revealed that 82.4% of 4375 predicted genes in BEST195 are one-to-one orthologous to genes in 168, with two genes in-paralog, 3.2% are deleted in 168, 14.3% are inserted in BEST195, and 5.9% of genes present in 168 are deleted in BEST195. The natto genome contains the same alleles in the promoter region of degQ and the coding region of swrAA as the wild strain, RO-FF-1. These are specific for gamma-PGA production ability, which is related to natto production. Further, the B. subtilis natto strain completely lacked a polyketide synthesis operon, disrupted the plipastatin production operon, and possesses previously unidentified transposases. CONCLUSIONS: The determination of the whole genome sequence of Bacillus subtilis natto provided detailed analyses of a set of genes related to natto production, demonstrating the number and locations of insertion sequences that B. subtilis natto harbors but B. subtilis 168 lacks. Multiple genome-level comparisons among five closely related Bacillus species were also carried out. The determined genome sequence of B. subtilis natto and gene annotations are available from the Natto genome browser http:\/\/natto-genome.org/.
Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
The 49630 bp spo0H-rrnH region of the Bacillus subtilis genome has been fully sequenced. The sequence contains one partial and 62 complete ORFs, one partial and three complete rRNA genes and a cluster of six tRNA genes. The direction of the transcription and translation of 61 ORFs is the same as that of the movement of the replication fork. A homology search of 40 ORFs in newly determined sequence revealed that 27 of them had significant similarity to known proteins such as elongation factor G, elongation factor Tu, pseudouridine synthase I and ribsosomal proteins. Two adjacent genes, ybaD and ybaE, appeared to encode proteins belonging to the ATP-binding cassette (ABC) family.
        
10 lessTitle: Draft Genome Sequence of Bacillus subtilis QH-1, a Chromium-Reducing Bacterial Strain Isolated in Qinghai Province, China Feng L, Ma T, Zhang J, Xu F, Shi L Ref: Genome Announc, 2:, 2014 : PubMed
Bacillus subtilis strain QH-1, a chromium-reducing bacterial strain, was isolated from a soil sample from a chromium-containing slag heap. The draft genome sequence of this bacterium is 4,034,036 bp in length, with a G+C content of 43.71%, and it is predicted to contain 4,082 protein-coding genes.
The genome sequence of Bacillus subtilis ATCC 6051 and its suitability as an expression host for recombinant protein production was determined. The comparison of this undomesticated wild type with the widely used laboratory strain B. subtilis 168 reveals a high degree of congruency between the two strains. Differences could only be detected on the level of point mutations or small insertions. B. subtilis ATCC 6051 shows none of the auxotrophies known for B. subtilis 168 and is able to produce polyketides. It exhibits better use of complex media and higher genomic stability through reduced natural competence. Consequently, B. subtilis ATCC 6051 was genetically modified to yield an optimized strain for the production of heterologously expressed proteins under control of an acetoin-inducible promoter.
        
Title: Genome Sequence of Bacillus subtilis MB73/2, a Soil Isolate Inhibiting the Growth of Plant Pathogens Dickeya spp. and Rhizoctonia solani Krzyzanowska DM, Iwanicki A, Ossowicki A, Obuchowski M, Jafra S Ref: Genome Announc, 1:, 2013 : PubMed
Bacillus subilis MB73/2 is a Gram-positive bacterium isolated in Poland from a meadow soil sample. When tested in vitro, the strain shows strong antagonism toward plant pathogens-the soft rot-causing bacteria Dickeya spp. and the crown rot fungus Rhizoctonia solani. Here, we present the genome sequence of MB73/2.
        
Title: Complete Genome Sequence of Bacillus subtilis Strain PY79 Schroeder JW, Simmons LA Ref: Genome Announc, 1:, 2013 : PubMed
Bacillus subtilis is a Gram-positive soil-dwelling and endospore-forming bacterium in the phylum Firmicutes. B. subtilis strain PY79 is a prototrophic laboratory strain that has been highly used for studying a wide variety of cellular pathways. Here, we announce the complete whole-genome sequence of B. subtilis PY79.
Bacillus subtilis is a Gram-positive, rod-shaped, spore-forming bacterium. We present the genome sequence of an undomesticated strain, BSP1, isolated from poultry. The sequence of the BSP1 genome supports the view that B. subtilis has a biphasic lifestyle, cycling between the soil and the animal gastrointestinal tract, and it provides molecular-level insight into the adaptation of B. subtilis to life under laboratory conditions.
We sequenced four strains of Bacillus subtilis and the type strains for two closely related species, Bacillus vallismortis and Bacillus mojavensis. We report the high-quality Sanger genome sequences of B. subtilis subspecies subtilis RO-NN-1 and AUSI98, B. subtilis subspecies spizizenii TU-B-10(T) and DV1-B-1, Bacillus mojavensis RO-H-1(T), and Bacillus vallismortis DV1-F-3(T).
        
Title: Complete sequence of the first chimera genome constructed by cloning the whole genome of Synechocystis strain PCC6803 into the Bacillus subtilis 168 genome Watanabe S, Shiwa Y, Itaya M, Yoshikawa H Ref: Journal of Bacteriology, 194:7007, 2012 : PubMed
Genome synthesis of existing or designed genomes is made feasible by the first successful cloning of a cyanobacterium, Synechocystis PCC6803, in Gram-positive, endospore-forming Bacillus subtilis. Whole-genome sequence analysis of the isolate and parental B. subtilis strains provides clues for identifying single nucleotide polymorphisms (SNPs) in the 2 complete bacterial genomes in one cell.
        
Title: Genome sequencing of Bacillus subtilis SC-8, antagonistic to the Bacillus cereus group, isolated from traditional Korean fermented-soybean food Yeo IC, Lee NK, Hahm YT Ref: Journal of Bacteriology, 194:536, 2012 : PubMed
Bacillus subtilis SC-8 is a Gram-positive bacterium displaying narrow antagonistic activity for the Bacillus cereus group. B. subtilis SC-8 was isolated from Korean traditional fermented-soybean food. Here we report the draft genome sequence of B. subtilis SC-8, including biosynthetic genes for antibiotics that may have beneficial effects for control of food-borne pathogens.
        
Title: Complete genome sequence of Bacillus subtilis strain QB928, a strain widely used in B. subtilis genetic studies Yu CS, Yim KY, Tsui SK, Chan TF Ref: Journal of Bacteriology, 194:6308, 2012 : PubMed
The complete genome sequence of Bacillus subtilis strain QB928 was constructed to facilitate studies in the evolution of the genetic code. With a widespread use of the strain in Bacillus subtilis genetics studies, its complete genome sequence would facilitate deeper understanding of Bacillus subtilis genetics.
        
Title: Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora Deng Y, Zhu Y, Wang P, Zhu L, Zheng J, Li R, Ruan L, Peng D, Sun M Ref: Journal of Bacteriology, 193:2070, 2011 : PubMed
Here, we present the complete genome sequence of Bacillus subtilis strain BSn5, isolated from Amorphophallus konjac calli tissue and showing strong inhibitory activity to Erwinia carotovora subsp. carotovora, which causes Amorphophallus soft rot disease and affects the industry development of this organism.
BACKGROUND: Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and functions as a starter for the production of the traditional Japanese food "natto" made from soybeans. Although re-sequencing whole genomes of several laboratory domesticated B. subtilis 168 derivatives has already been attempted using short read sequencing data, the assembly of the whole genome sequence of a closely related strain, B. subtilis natto, from very short read data is more challenging, particularly with our aim to assemble one fully connected scaffold from short reads around 35 bp in length. RESULTS: We applied a comparative genome assembly method, which combines de novo assembly and reference guided assembly, to one of the B. subtilis natto strains. We successfully assembled 28 scaffolds and managed to avoid substantial fragmentation. Completion of the assembly through long PCR experiments resulted in one connected scaffold for B. subtilis natto. Based on the assembled genome sequence, our orthologous gene analysis between natto BEST195 and Marburg 168 revealed that 82.4% of 4375 predicted genes in BEST195 are one-to-one orthologous to genes in 168, with two genes in-paralog, 3.2% are deleted in 168, 14.3% are inserted in BEST195, and 5.9% of genes present in 168 are deleted in BEST195. The natto genome contains the same alleles in the promoter region of degQ and the coding region of swrAA as the wild strain, RO-FF-1. These are specific for gamma-PGA production ability, which is related to natto production. Further, the B. subtilis natto strain completely lacked a polyketide synthesis operon, disrupted the plipastatin production operon, and possesses previously unidentified transposases. CONCLUSIONS: The determination of the whole genome sequence of Bacillus subtilis natto provided detailed analyses of a set of genes related to natto production, demonstrating the number and locations of insertion sequences that B. subtilis natto harbors but B. subtilis 168 lacks. Multiple genome-level comparisons among five closely related Bacillus species were also carried out. The determined genome sequence of B. subtilis natto and gene annotations are available from the Natto genome browser http:\/\/natto-genome.org/.
Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
The 49630 bp spo0H-rrnH region of the Bacillus subtilis genome has been fully sequenced. The sequence contains one partial and 62 complete ORFs, one partial and three complete rRNA genes and a cluster of six tRNA genes. The direction of the transcription and translation of 61 ORFs is the same as that of the movement of the replication fork. A homology search of 40 ORFs in newly determined sequence revealed that 27 of them had significant similarity to known proteins such as elongation factor G, elongation factor Tu, pseudouridine synthase I and ribsosomal proteins. Two adjacent genes, ybaD and ybaE, appeared to encode proteins belonging to the ATP-binding cassette (ABC) family.