(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Firmicutes: NE > Bacilli: NE > Bacillales: NE > Bacillaceae: NE > Bacillus: NE > Bacillus subtilis group: NE > Bacillus subtilis: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Bacillus subtilis subsp. spizizenii ATCC 6633: N, E.
Bacillus subtilis subsp. spizizenii: N, E.
Bacillus subtilis subsp. natto BEST195: N, E.
Bacillus subtilis subsp. spizizenii str. W23: N, E.
Bacillus subtilis BSn5: N, E.
Bacillus subtilis QH-1: N, E.
Bacillus subtilis QB928: N, E.
Bacillus subtilis subsp. subtilis str. BAB-1: N, E.
Bacillus subtilis BEST7613: N, E.
Bacillus subtilis subsp. subtilis str. SC-8: N, E.
Bacillus subtilis MB73/2: N, E.
Bacillus subtilis BEST7003: N, E.
Bacillus subtilis XF-1: N, E.
Bacillus subtilis subsp. spizizenii TU-B-10: N, E.
Bacillus subtilis subsp. subtilis str. 168: N, E.
Bacillus subtilis subsp. subtilis str. RO-NN-1: N, E.
Bacillus subtilis PY79: N, E.
Bacillus subtilis subsp. subtilis str. BSP1: N, E.
Bacillus subtilis subsp. subtilis 6051-HGW: N, E.
Bacillus subtilis subsp. subtilis str. JH642 substr. AG174: N, E.
Bacillus subtilis subsp. subtilis str. AG1839: N, E.
Bacillus subtilis subsp. subtilis str. OH 131.1: N, E.
Bacillus subtilis E1: N, E.
Bacillus subtilis TO-A: N, E.
Bacillus subtilis Miyagi-4: N, E.
Bacillus subtilis subsp. subtilis: N, E.
Bacillus subtilis subsp. niger: N, E.
Bacillus subtilis subsp. inaquosorum KCTC 13429: N, E.
Bacillus subtilis subsp. globigii: N, E.
Molecular evidence
Database
No mutation 1 structure: 4CCY: Crystal structure of carboxylesterase CesB (YbfK) from Bacillus subtilis No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MIQDSMQFAAVESGLRFYQAYDQSLSLWPIESEAFYVSTRFGKTHIIASG PKDAPSLILLHGGLFSSAMWYPNIAAWSSQFRTYAVDIIGDKNKSIPSAA METRADFAEWMKDVFDSLGLETAHLAGLSLGGSHIVNFLLRAPERVERAV VISPAEAFISFHPDVYKYAAELTGARGAESYIKWITGDSYDLHPLLQRQI VAGVEWQDEQRSLKPTENGFPYVFTDQELKSIQVPVLLMFGEHEAMYHQQ MAFERASVLVPGIQAEIVKNAGHLLSLEQPEYVNQRVLSFLCGGIK
Naproxen esterase (NP) from Bacillus subtilis Thai I-8 is a carboxylesterase that catalyzes the enantioselective hydrolysis of naproxenmethylester to produce S-naproxen (E>200). It is a homolog of CesA (98% sequence identity) and CesB (64% identity), both produced by B. subtilis strain 168. CesB can be used for the enantioselective hydrolysis of 1,2-O-isopropylideneglycerol (solketal) esters (E>200 for IPG-caprylate). Crystal structures of NP and CesB, determined to a resolution of 1.75A and 2.04A, respectively, showed that both proteins have a canonical alpha/beta hydrolase fold with an extra N-terminal helix stabilizing the cap subdomain. The active site in both enzymes is located in a deep hydrophobic groove and includes the catalytic triad residues Ser130, His274, and Glu245. A product analog, presumably 2-(2-hydroxyethoxy)acetic acid, was bound in the NP active site. The enzymes have different enantioselectivities, which previously were shown to result from only a few amino acid substitutions in the cap domain. Modeling of a substrate in the active site of NP allowed explaining the different enantioselectivities. In addition, Ala156 may be a determinant of enantioselectivity as well, since its side chain appears to interfere with the binding of certain R-enantiomers in the active site of NP. However, the exchange route for substrate and product between the active site and the solvent is not obvious from the structures. Flexibility of the cap domain might facilitate such exchange. Interestingly, both carboxylesterases show higher structural similarity to meta-cleavage compound (MCP) hydrolases than to other alpha/beta hydrolase fold esterases.
        
Title: Comparison and functional characterisation of three homologous intracellular carboxylesterases of Bacillus subtilis Droge MJ, Bos R, Boersma YL, Quax WJ Ref: J Mol Catal B Enzym, 32:261, 2005 : PubMed
Enzymatic hydrolysis of racemic mixtures may provide an attractive method for the enantiopure production of chiral pharmaceuticals. For example, the carboxylesterase NP of Bacillus subtilis Thai I-8 is an excellent biocatalyst in the kinetic resolution of NSAID esters, such as naproxen and ibuprofen methyl esters. Two homologues of this enzyme were identified when the genome sequence of B. subtilis 168 was revealed in 1997. We characterised one of the homologous, YbfK, as a very enantioselective 1,2-O-isopropylidene-sn-glycerol caprylate esterase, while only modest enantioselectivity towards the naproxen ester was observed. The other homologue, the carboxylesterase NA has not been characterised yet. The purpose of the present study was to fully characterise these three highly homologous esterases with respect to their applicability towards the enantiospecific hydrolysis of a wide range of compounds. The esterase genes were cloned and expressed in B. subtilis using a combination of two strong promotors in a multi-copy vector. After purification of the enzymes from the cytoplasm of B. subtilis, the biochemical and enantioselective properties of the enzymes were determined. Although all carboxylesterases have similar physico-chemical properties, comparison of their specific activities and enantioselectivities towards several compounds revealed rather different substrate specificities. We conclude that carboxylesterase NP and carboxylesterase NA are particularly suited for the enzymatic conversion of naproxen esters, while YbfK offers enantiopure (+)-IPG from its caprylate ester. Given the carboxylesterase activities of the esterases it has been proposed to rename the nap gene of B. subtilis 168 into cesA and the ybfK gene into cesB.
Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.