(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Laurasiatheria: NE > Cetartiodactyla: NE > Ruminantia: NE > Pecora: NE > Bovidae: NE > Bovinae: NE > Bos: NE > Bos taurus: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MQSRSTVIYIRFVLWFLLLWVLFEKSHTEEDIIITTKNGKVRGMHLPVLG GTVTAFLGIPYAQPPLGRLRFKKPQSLTKWPDIWNATKYANSCYQNTDQS FPGFLGSEMWNPNTDLSEDCLYLNVWIPTPKPKNATVMIWIYGGSFQTGT SSLHVYDGKFLARVERVIVVSMNYRVGALGFLALPGNPEAPGNVGLFDQQ LALQWVQKNIAAFGGNPKSVTLFGESAGAASVSLHLLSPESHPLFTRAIL QSGSSNAPWAVTSRYEARNRTLTLAKFIGCSRENDTEIIKCLRNKDPQEI LRHEVFVVPYGTLLSVNFGPTVDGDFLTDMPDTLLQLGQFKKTQILVGVN KDEGTAFLVYGAPGFSKDNNSIITRKEFQEGLKIFFPGVSEFGKESILFH YMDWLDDQRAEKYREALDDVVGDYNIICPALEFTKKFSDMGNNAFFYYFE HRSSKLPWPEWMGVMHGYEIEFVFGLPLERRVNYTKAEEIFSRSIMKRWA NFAKYGNPNGTQNNSTRWPVFKSNEQKYFTLNTESPKVNTKLRAQQCRFW TLFFPKVLEITGNIDEVEREWKAGFHRWNNYMMDWKNQFNDYTSKKESCA GL
Human butyrylcholinesterase (HuBChE) protects from nerve agent toxicity. Our goal was to determine whether bovine serum could be used as a source of BChE. Bovine BChE (BoBChE) was immunopurified from 100 mL fetal bovine serum (FBS) or 380 mL adult bovine serum by binding to immobilized monoclonal mAb2. Bound proteins were digested with trypsin and analyzed by liquid chromatography-tandem mass spectrometry. The results proved that FBS and adult bovine serum contain BoBChE. The concentration of BoBChE was estimated to be 0.04 mug/mL in FBS, and 0.03 mug/mL in adult bovine serum, values lower than the 4 mug/mL BChE in human serum. Nondenaturing gel electrophoresis showed that monoclonal mAb2 bound BoBChE but not bovine acetylcholinesterase (BoAChE) and confirmed that FBS contains BoBChE and BoAChE. Recombinant bovine BChE (rBoBChE) expressed in serum-free culture medium spontaneously reactivated from inhibition by chlorpyrifos oxon at a rate of 0.0023 min-1 (t1/2 = 301 min-1) and aged at a rate of 0.0138 min-1 (t1/2 = 50 min-1). Both BoBChE and HuBChE have 574 amino acids per subunit and 90% sequence identity. However, the apparent size of serum BoBChE and rBoBChE tetramers was much greater than the 340,000 Da of HuBChE tetramers. Whereas HuBChE tetramers include short polyproline rich peptides derived from lamellipodin, no polyproline peptides have been identified in BoBChE. We hypothesize that BoBChE tetramers use a large polyproline-rich protein to organize subunits into a tetramer and that the low concentration of BoBChE in serum is explained by limited quantities of an unidentified polyproline-rich protein.
Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude. Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans.
Genomic blots from man, monkey, cow, sheep, pig, rabbit, dog, rat, mouse, guinea pig, and chicken DNA were hybridized with probes derived from the four exons of the human butyrylcholinesterase gene (BCHE) (Arpagaus, M., Kott, M., Vatsis, K. P., Bartels, C. F., La Du, B. N., and Lockridge, O. (1990) Biochemistry 29, 124-131). Results showed that the BCHE gene was present in a single copy in the genome of all these vertebrates. The polymerase chain reaction was used to amplify genomic DNA from these animals with oligonucleotides derived from the human BCHE coding sequence. The amplified segment contained 423 bp of BCHE sequence including the active site serine of the enzyme (amino acid 198) and a component of the anionic site, aspartate 70. Amplification was successful for monkey, pig, cow, dog, sheep, and rabbit DNA, but unsuccessful for rat, guinea pig, mouse, and chicken DNA. Amplified segments were cloned in M13 and sequenced. The mouse sequence was obtained by sequencing a genomic clone. The highest identity of the human amino acid sequence was found with monkey (100%) and the lowest with mouse (91.5%). The sequence around the active site serine 198, Phe-Gly-Glu-Ser-Ala-Gly-Ala, was conserved in all eight animals as was the anionic site component, aspartate 70. A phylogenetic tree of mammalian butyrylcholinesterases was constructed using the partial BCHE sequences.