(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Laurasiatheria: NE > Cetartiodactyla: NE > Ruminantia: NE > Pecora: NE > Bovidae: NE > Bovinae: NE > Bos: NE > Bos taurus: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MAAEEDGVNSADASERSGWLTGWLPTWCPTSTSHLKEAEEKILKCVPCTY KKEPVRISNGNKIWTLKLSHISNKTPLVLLHGFGGGLGLWALNFGDLCTN RPVYAFDLLGFGRSSRPRFDSDAEEVENQFVESIEEWRCALGLDKMILLG HNLGGFLAAGYSLKYPSRVSHLILVEPWGFSERPDLADQERPIPVWIRAL GAALTPFNPLAGLRIAGPFGLSLVQRLRPDFKRKYSSMFDDDTVTEYIYH CNVQTPSGETAFKNMTIPYGWAKRPMLQRIGKMHPDIPVSVIFGARSCMD GDSGTSIQSLRPQSYVKTIAILGAGHYVYADQPEDFNQKVKEICDTVD
Alpha/beta hydrolase domain 5 (ABHD5) plays a significant role in intracellular lipid metabolism, which is regulated by a complex network of transcription factors. The transcriptional regulation of the ABHD5 gene in cattle and other livestock, however, has not been previously investigated. Investigations in humans and animal models indicate that the transcription factors zinc finger E-box binding homeobox 1 (ZEB1) and cAMP-response element binding protein (CREB) may play important roles in the transcriptional regulation of ABHD5 in cattle. Our comparison of the sequence similarities in the transcription factor binding sites in Bos taurus, Bos indicus, Bos mutus, and Homo sapiens revealed high homology. Based on the data collected by the Cistrome Data Browser and its visualization window, we found that ZEB1 and CREB have significant ChIP-seq enrichments in the 5'-untranslated region (5' UTR) of the human ABHD5 gene. In bovine adipocytes, we detected ZEB1 and CREB binding sites in the ABHD5 gene. Mutations in the ZEB1 and CREB binding sites significantly reduced the promoter activity (p < 0.05 and p < 0.01, respectively). Moreover, electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP) assays demonstrated the binding of the transcription factors in vivo and in vitro, respectively. And overexpression or silencing the expression of the ZEB1 and CREB, respectively, resulted in significant changes to the ABHD5 promoter activity. Collectively, these results indicate that ZEB1 and CREB are important transcription factors that regulate ABHD5 gene expression in bovine adipocytes. They further our understanding of the transcriptional regulation and biological functions of the bovine ABHD5 gene.
        
Title: Molecular characterization of ABHD5 gene promoter in intramuscular preadipocytes of Qinchuan cattle: Roles of Evi1 and C/EBPalpha Wang X, Khan R, Raza SHA, Li A, Zhang Y, Liang C, Yang W, Wu S, Zan L Ref: Gene, 690:38, 2019 : PubMed
The genetic regulation of lipolytic enzyme is closely related to carcass quality traits through deposition of intramuscular fat (marbling) in beef cattle breeds. The alpha/beta hydrolase domain containing 5 (ABHD5) is an accelerating factor of adipose triglyceride lipase (ATGL), which plays a key role in triglyceride metabolism. In this study, we determined that bovine ABHD5 gene was highly expressed in adult bovine adipose tissue. To elucidate the molecular mechanisms involved in bovine ABHD5 regulation, we cloned and characterized the promoter region of ABHD5. Applying 5'-rapid amplification of cDNA end analysis (RACE), we identified transcriptional start site (TSS) found in the predicted CpG island within promoter region of ABHD5 gene. Using the recombinant dual fluorescent reporter vectors, the fragment of -109/+307 was identified as proximal minimum core promoter region of ABHD5 in bovine intramuscular adipocytes. Site directed mutagenesis and electrophoretic mobility shift assay (EMSA) confirmed the role of two transcription factors, namely Ectopic viral integration site-1 (Evi1) and CCAAT/enhancer binding protein alpha (C/EBPalpha), in the regulation of ABHD5 gene. Taken together these findings we can conclude that ABHD5 gene regulated by Evi1 and C/EBPalpha could be used as potential marker in marker assisted selection for the improvement of Qinchuan cattle breed for carcass quality traits.
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
Alpha/beta hydrolase domain 5 (ABHD5) plays a significant role in intracellular lipid metabolism, which is regulated by a complex network of transcription factors. The transcriptional regulation of the ABHD5 gene in cattle and other livestock, however, has not been previously investigated. Investigations in humans and animal models indicate that the transcription factors zinc finger E-box binding homeobox 1 (ZEB1) and cAMP-response element binding protein (CREB) may play important roles in the transcriptional regulation of ABHD5 in cattle. Our comparison of the sequence similarities in the transcription factor binding sites in Bos taurus, Bos indicus, Bos mutus, and Homo sapiens revealed high homology. Based on the data collected by the Cistrome Data Browser and its visualization window, we found that ZEB1 and CREB have significant ChIP-seq enrichments in the 5'-untranslated region (5' UTR) of the human ABHD5 gene. In bovine adipocytes, we detected ZEB1 and CREB binding sites in the ABHD5 gene. Mutations in the ZEB1 and CREB binding sites significantly reduced the promoter activity (p < 0.05 and p < 0.01, respectively). Moreover, electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP) assays demonstrated the binding of the transcription factors in vivo and in vitro, respectively. And overexpression or silencing the expression of the ZEB1 and CREB, respectively, resulted in significant changes to the ABHD5 promoter activity. Collectively, these results indicate that ZEB1 and CREB are important transcription factors that regulate ABHD5 gene expression in bovine adipocytes. They further our understanding of the transcriptional regulation and biological functions of the bovine ABHD5 gene.
        
Title: Molecular characterization of ABHD5 gene promoter in intramuscular preadipocytes of Qinchuan cattle: Roles of Evi1 and C/EBPalpha Wang X, Khan R, Raza SHA, Li A, Zhang Y, Liang C, Yang W, Wu S, Zan L Ref: Gene, 690:38, 2019 : PubMed
The genetic regulation of lipolytic enzyme is closely related to carcass quality traits through deposition of intramuscular fat (marbling) in beef cattle breeds. The alpha/beta hydrolase domain containing 5 (ABHD5) is an accelerating factor of adipose triglyceride lipase (ATGL), which plays a key role in triglyceride metabolism. In this study, we determined that bovine ABHD5 gene was highly expressed in adult bovine adipose tissue. To elucidate the molecular mechanisms involved in bovine ABHD5 regulation, we cloned and characterized the promoter region of ABHD5. Applying 5'-rapid amplification of cDNA end analysis (RACE), we identified transcriptional start site (TSS) found in the predicted CpG island within promoter region of ABHD5 gene. Using the recombinant dual fluorescent reporter vectors, the fragment of -109/+307 was identified as proximal minimum core promoter region of ABHD5 in bovine intramuscular adipocytes. Site directed mutagenesis and electrophoretic mobility shift assay (EMSA) confirmed the role of two transcription factors, namely Ectopic viral integration site-1 (Evi1) and CCAAT/enhancer binding protein alpha (C/EBPalpha), in the regulation of ABHD5 gene. Taken together these findings we can conclude that ABHD5 gene regulated by Evi1 and C/EBPalpha could be used as potential marker in marker assisted selection for the improvement of Qinchuan cattle breed for carcass quality traits.
Regulation of lipolysis in muscle is a potential mechanism affecting marbling in beef carcasses and fat accumulation in muscles of humans, which is a known risk factor for type 2 diabetes. Adipose triglyceride lipase-mediated lipolysis is inhibited by G0/G1 switch gene 2 (G0S2) and co-activated by comparative gene identification-58 (CGI-58). In this study, bovine G0S2 and CGI-58 were sequenced, and expressions of these genes were compared among various tissues and in muscles between bulls and steers with different degrees of marbling. The protein coding sequences of bovine G0S2 and CGI-58 revealed breed-specific SNPs, causing two amino acid variations for each protein. Bovine CGI-58 mRNA showed two isoforms from alternative splicing. The G0S2 gene was preferentially expressed in fat and, to a lesser degree, in the liver; whereas, CGI-58 was highly expressed in the muscle and fat (P < 0.05), suggesting their association with lipid metabolism in those tissues. The longissimus dorsi muscle (LM) of steers showed higher FABP4, G0S2 and CGI-58 mRNA expression levels than the LM of bulls, implying the roles of those genes more in marbling of steers than in that of bulls. The G0S2 expression was markedly higher in the intramuscular fat (IMF) (P < 0.001); whereas, the CGI-58 expression was significantly higher in the pure muscle portion of the LM of steers (P < 0.01), suggesting that G0S2 and CGI-58 may regulate IMF and intramyocellular triglycerides, respectively. Taken together, our data suggest that G0S2 and CGI-58 are associated with fat content in bovine species.
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.