(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Viridiplantae: NE > Streptophyta: NE > Streptophytina: NE > Embryophyta: NE > Tracheophyta: NE > Euphyllophyta: NE > Spermatophyta: NE > Magnoliophyta: NE > Mesangiospermae: NE > eudicotyledons: NE > Gunneridae: NE > Pentapetalae: NE > asterids: NE > lamiids: NE > Solanales: NE > Solanaceae: NE > Solanoideae: NE > Capsiceae: NE > Capsicum: NE > Capsicum annuum: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MASQSFVPPIFENPFLNIEELAGDTIVRKPEPLTQANSDPNGTSLVVSKD VDLDINKKTWLRIYVPQRIITNHNDDEKLPVIFYYHGGGFVFFHANSFAW DLFCQGLAGNLGAMVISLEFRLAPENRLPAAYDDAMDGLYWIKSTQDEWV RKYSDLSNVYLFGSSCGGNIAYHAGLRVAAGAYKELEPVKIKGLILHQPY FSGKNRTESEEKLKDDQLLPLHAIDKMFDLSLPKGTLDHDHEYSNPFLNG GSKHLDDVIAQGWKILVTGVSGDPLVDNARNFANFMEEKGIKTFKLFGDG YHAIEGFEPSKAAALIGATKDFICATTN
References
Title: A Colletotrichum gloeosporioides-induced esterase gene of nonclimacteric pepper (Capsicum annuum) fruit during ripening plays a role in resistance against fungal infection Ko MK, Jeon WB, Kim KS, Lee HH, Seo HH, Kim YS, Oh BJ Ref: Plant Mol Biol, 58:529, 2005 : PubMed
Ripe fruits of pepper (Capsicum annuum) are resistant to the anthracnose fungus, Colletotrichum gloeosporioides, whereas unripe-mature fruits are susceptible. A pepper esterase gene (PepEST) that is highly expressed during an incompatible interaction between the ripe fruit of pepper and C. gloeosporioides was previously cloned. Deduced amino acid sequence of PepEST cDNA showed homology to both esterases and lipases, and contained -HGGGF- and -GXSXG- motifs and a catalytic triad. Inhibition of PepEST activity by a specific inhibitor of serine hydrolase demonstrated that a serine residue is critical for the enzyme activity. Expression of PepEST gene was fruit-specific in response to C. gloeosporioides inoculation, and up-regulated by wounding or jasmonic acid treatment during ripening. PepEST mRNA and protein was differentially accumulated in ripe vs. unripe fruit from 24 h after inoculation when C. gloeosporioides is invading into fruits. Immunochemical examination revealed that PepEST accumulation was localized in epidermal and cortical cell layers in infected ripe fruit, but rarely even in epidermal cells in infected unripe one. Over-expression of PepEST in transgenic Arabidopsis plants caused restriction of Alternaria brassicicola colonization by inhibition of spore production, resulting in enhanced resistance against A.brassicicola. These results suggest that PepEST is involved in the resistance of ripe fruit against C.gloeosporioides infection.
Carboxylesterases hydrolyze esters of short-chain fatty acids and have roles in animals ranging from signal transduction to xenobiotic detoxification. In plants, however, little is known of their roles. We have systematically mined the genome from the model plant Arabidopsis thaliana for carboxylesterase genes and studied their distribution in the genome and expression profile across a range of tissues. Twenty carboxylesterase genes (AtCXE) were identified. The AtCXE family shares conserved sequence motifs and secondary structure characteristics with carboxylesterases and other members of the larger alpha/beta hydrolase fold superfamily of enzymes. Phylogenetic analysis of the AtCXE genes together with other plant carboxylesterases distinguishes seven distinct clades, with an Arabidopsis thaliana gene represented in six of the seven clades. The AtCXE genes are widely distributed across the genome (present in four of five chromosomes), with the exception of three clusters of tandemly duplicated genes. Of the interchromosomal duplication events, two have been mediated through newly identified partial chromosomal duplication events that also include other genes surrounding the AtCXE loci. Eighteen of the 20 AtCXE genes are expressed over a broad range of tissues, while the remaining 2 (unrelated) genes are expressed only in the flowers and siliques. Finally, hypotheses for the functional roles of the AtCXE family members are presented based on the phylogenetic relationships with other plant carboxylesterases of known function, their expression profile, and knowledge of likely esterase substrates found in plants.