(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Actinobacteria [phylum]: NE > Actinobacteria [class]: NE > Corynebacteriales: NE > Corynebacteriaceae: NE > Corynebacterium: NE > Corynebacterium glutamicum: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Corynebacterium glutamicum ATCC 14067: N, E.
Corynebacterium glutamicum R: N, E.
Corynebacterium glutamicum ATCC 13032: N, E.
Corynebacterium glutamicum SCgG1: N, E.
Corynebacterium glutamicum Z188: N, E.
Corynebacterium glutamicum S9114: N, E.
Corynebacterium glutamicum K051: N, E.
Corynebacterium glutamicum SCgG2: N, E.
Corynebacterium glutamicum MB001: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MVDALNDLRRELTNALRSVWKNLPTDNAPQADALPDDVVEEIAINFYRDP KNRGKLNEDKTDSLPMLARIRSRGLFEDDWRARPTEDRPWPVVLVHGTGS TKGDWQDLGADLRRDGWAVFAPEFGQRATGSVAESSAQIGAYIDTVLLAT GASKVIVVGHSQGGVLLRYWMRVLGGASKVKHMVSLAVPNHGTTMGGIVS PLIRNNRGESVVNSVVQSWFGEAGFEMIRGHDTINAINEGGDLDPDVTYL CIATHFDTVIQPPETCFLEARNPEELKRVQNIWVENLDPNSVVLHEAMPY DPRVRALVRADLSKLVEISETAEN
The complete genome sequence of Corynebacterium glutamicum strain R was determined to allow its comparative analysis with other corynebacteria. The biology of corynebacteria was explored by refining the definition of the subset of genes that constitutes the corynebacterial core as well as those characteristic of saprophytic and pathogenic ecological niches. In addition, the relative scarcity of corynebacterial sigma factors and the plasticity of their two-component system machinery reflect their relatively exacting nutritional requirements and reduced membrane-associated and secreted proteins. The conservation of key genes and pathways between corynebacteria, mycobacteria and Nocardia validates the use of C. glutamicum to study fundamental processes that are conserved in slow-growing mycobacteria, including pathogenesis-associated mechanisms. The discovery of 39 novel genes in C. glutamicum R that have not been previously reported in other corynebacteria supports the rationale for sequencing additional corynebacterial genomes to better define the corynebacterial pan-genome and identify previously undetected metabolic pathways in these organisms.