(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Actinobacteria [phylum]: NE > Actinobacteria [class]: NE > Corynebacteriales: NE > Corynebacteriaceae: NE > Corynebacterium: NE > Corynebacterium glutamicum: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Corynebacterium glutamicum ATCC 14067: N, E.
Corynebacterium glutamicum R: N, E.
Corynebacterium glutamicum ATCC 13032: N, E.
Corynebacterium glutamicum SCgG1: N, E.
Corynebacterium glutamicum Z188: N, E.
Corynebacterium glutamicum S9114: N, E.
Corynebacterium glutamicum K051: N, E.
Corynebacterium glutamicum SCgG2: N, E.
Corynebacterium glutamicum MB001: N, E.
Corynebacterium crenatum MT: N, E.
[Brevibacterium] flavum: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSATSSVTVECPAGTITGEPHYFRSIPYAKARPFADAEKLEPLRIDATGK HEGLYLTLATPEARFGADAPVIVYIHGGGYDGGTRFDARTEPTFFREQGF VVVSIDYRVGLEGFARFHDDEANRYRGIDDCVLALEWVQKNIEHFGGDPT NVTLIGQSAGAGIALWLTRLDHYKGAFRRLVALSPSFPRQPFAARKGALR RALGKPVTRASLAGIKPARLDKGYRRFARRYFTDLALGPTPYDPNELADI DLIISSTRDEMYGHRAGLWFDQRGFGAKLAARLFGLENSDTYIKEARKID NRVVGRMIGDAVIRRYVAQTEKGWWMEFPGKHCDDLSLVFLEDSEAHHHI ASFARGATPSWPQYSEENRAALSLVSGEAKVVKDPLRMVRLAF
The complete genome sequence of Corynebacterium glutamicum strain R was determined to allow its comparative analysis with other corynebacteria. The biology of corynebacteria was explored by refining the definition of the subset of genes that constitutes the corynebacterial core as well as those characteristic of saprophytic and pathogenic ecological niches. In addition, the relative scarcity of corynebacterial sigma factors and the plasticity of their two-component system machinery reflect their relatively exacting nutritional requirements and reduced membrane-associated and secreted proteins. The conservation of key genes and pathways between corynebacteria, mycobacteria and Nocardia validates the use of C. glutamicum to study fundamental processes that are conserved in slow-growing mycobacteria, including pathogenesis-associated mechanisms. The discovery of 39 novel genes in C. glutamicum R that have not been previously reported in other corynebacteria supports the rationale for sequencing additional corynebacterial genomes to better define the corynebacterial pan-genome and identify previously undetected metabolic pathways in these organisms.
The complete genomic sequence of Corynebacterium glutamicum ATCC 13032, well-known in industry for the production of amino acids, e.g. of L-glutamate and L-lysine was determined. The C. glutamicum genome was found to consist of a single circular chromosome comprising 3282708 base pairs. Several DNA regions of unusual composition were identified that were potentially acquired by horizontal gene transfer, e.g. a segment of DNA from C. diphtheriae and a prophage-containing region. After automated and manual annotation, 3002 protein-coding genes have been identified, and to 2489 of these, functions were assigned by homologies to known proteins. These analyses confirm the taxonomic position of C. glutamicum as related to Mycobacteria and show a broad metabolic diversity as expected for a bacterium living in the soil. As an example for biotechnological application the complete genome sequence was used to reconstruct the metabolic flow of carbon into a number of industrially important products derived from the amino acid L-aspartate.
        
Title: Expression and functional analysis of a gene cluster involved in the synthesis of decaprenoxanthin reveals the mechanisms for C50 carotenoid formation Krubasik P, Kobayashi M, Sandmann G Ref: European Journal of Biochemistry, 268:3702, 2001 : PubMed
Corynebacterium glutamicum accumulates the C50 carotenoid decaprenoxanthin. Rescued DNA from transposon color mutants of this Gram-positive bacterium was used to clone the carotenoid biosynthetic gene cluster. By sequence comparison and functional complementation, the genes involved in the synthesis of carotenoids with 50 carbon atoms were identified. The genes crtE, encoding a geranylgeranyl pyrophosphate synthase, crtB, encoding a phytoene synthase, and crtI, encoding a phytoene desaturase, are responsible for the formation of lycopene. The products of three novel genes, crtYe and crtYf, with sequence similarities to heterodimeric lycopene cyclase crtYc and crtYd, together with crtEb which exhibits a prenyl transferase motif, were involved in the conversion of C40 acyclic lycopene to cyclic C50 carotenoids. Using functional complementation in Escherichia coli, it could be shown that the elongation of lycopene to the acyclic C50 carotenoid flavuxanthin by the addition of C5 isoprenoid units at positions C-2 and C-2' is catalyzed by the crtEb gene product. Subsequently, the gene products of crtYe and crtYf in a concerted action convert the acyclic flavuxanthin into the cyclic C50 carotene, decaprenoxanthin, forming two epsilon-ionone groups. The mechanisms, involving two individual steps for the formation of cyclic C50 carotenoids from lycopene, are proposed on the basis of these results.
L-arginine is an important amino acid for diverse industrial and health product applications. Here we report the development of metabolically engineered Corynebacterium glutamicum ATCC 21831 for the production of L-arginine. Random mutagenesis is first performed to increase the tolerance of C. glutamicum to L-arginine analogues, followed by systems metabolic engineering for further strain improvement, involving removal of regulatory repressors of arginine operon, optimization of NADPH level, disruption of L-glutamate exporter to increase L-arginine precursor and flux optimization of rate-limiting L-arginine biosynthetic reactions. Fed-batch fermentation of the final strain in 5 l and large-scale 1,500 l bioreactors allows production of 92.5 and 81.2 g l(-1) of L-arginine with the yields of 0.40 and 0.35 g L-arginine per gram carbon source (glucose plus sucrose), respectively. The systems metabolic engineering strategy described here will be useful for engineering Corynebacteria strains for the industrial production of L-arginine and related products.
The activity of bacteriophages and phage-related mobile elements is a major source for genome rearrangements and genetic instability of their bacterial hosts. The genome of the industrial amino acid producer Corynebacterium glutamicum ATCC 13032 contains three prophages (CGP1, CGP2, and CGP3) of so far unknown functionality. Several phage genes are regularly expressed, and the large prophage CGP3 ( approximately 190 kbp) has recently been shown to be induced under certain stress conditions. Here, we present the construction of MB001, a prophage-free variant of C. glutamicum ATCC 13032 with a 6% reduced genome. This strain does not show any unfavorable properties during extensive phenotypic characterization under various standard and stress conditions. As expected, we observed improved growth and fitness of MB001 under SOS-response-inducing conditions that trigger CGP3 induction in the wild-type strain. Further studies revealed that MB001 has a significantly increased transformation efficiency and produced about 30% more of the heterologous model protein enhanced yellow fluorescent protein (eYFP), presumably as a consequence of an increased plasmid copy number. These effects were attributed to the loss of the restriction-modification system (cg1996-cg1998) located within CGP3. The deletion of the prophages without any negative effect results in a novel platform strain for metabolic engineering and represents a useful step toward the construction of a C. glutamicum chassis genome of strain ATCC 13032 for biotechnological applications and synthetic biology.
We present a novel method for visualizing intracellular metabolite concentrations within single cells of Escherichia coli and Corynebacterium glutamicum that expedites the screening process of producers. It is based on transcription factors and we used it to isolate new L-lysine producing mutants of C. glutamicum from a large library of mutagenized cells using fluorescence-activated cell sorting (FACS). This high-throughput method fills the gap between existing high-throughput methods for mutant generation and genome analysis. The technology has diverse applications in the analysis of producer populations and screening of mutant libraries that carry mutations in plasmids or genomes.
        
Title: Genome sequence of Corynebacterium glutamicum ATCC 14067, which provides insight into amino acid biosynthesis in coryneform bacteria Lv Y, Liao J, Wu Z, Han S, Lin Y, Zheng S Ref: Journal of Bacteriology, 194:742, 2012 : PubMed
We report the genome sequence of Corynebacterium glutamicum ATCC 14067 (once named Brevibacterium flavum), which is useful for taxonomy research and further molecular breeding in amino acid production. Preliminary comparison with those of the reported coryneform strains revealed some notable differences that might be related to the difficulties in molecular manipulation.
        
Title: Genome sequence of Corynebacterium glutamicum S9114, a strain for industrial production of glutamate Lv Y, Wu Z, Han S, Lin Y, Zheng S Ref: Journal of Bacteriology, 193:6096, 2011 : PubMed
Here we report the genome sequence of Corynebacterium glutamicum S9114, an industrial producer widely used in production of glutamate in China. Preliminary comparison with the sequences of the Corynebacterium glutamicum strains ATCC 13032 and R revealed some notable mutagenesis that might be related to the high yield of glutamate.
The complete genome sequence of Corynebacterium glutamicum strain R was determined to allow its comparative analysis with other corynebacteria. The biology of corynebacteria was explored by refining the definition of the subset of genes that constitutes the corynebacterial core as well as those characteristic of saprophytic and pathogenic ecological niches. In addition, the relative scarcity of corynebacterial sigma factors and the plasticity of their two-component system machinery reflect their relatively exacting nutritional requirements and reduced membrane-associated and secreted proteins. The conservation of key genes and pathways between corynebacteria, mycobacteria and Nocardia validates the use of C. glutamicum to study fundamental processes that are conserved in slow-growing mycobacteria, including pathogenesis-associated mechanisms. The discovery of 39 novel genes in C. glutamicum R that have not been previously reported in other corynebacteria supports the rationale for sequencing additional corynebacterial genomes to better define the corynebacterial pan-genome and identify previously undetected metabolic pathways in these organisms.
The complete genomic sequence of Corynebacterium glutamicum ATCC 13032, well-known in industry for the production of amino acids, e.g. of L-glutamate and L-lysine was determined. The C. glutamicum genome was found to consist of a single circular chromosome comprising 3282708 base pairs. Several DNA regions of unusual composition were identified that were potentially acquired by horizontal gene transfer, e.g. a segment of DNA from C. diphtheriae and a prophage-containing region. After automated and manual annotation, 3002 protein-coding genes have been identified, and to 2489 of these, functions were assigned by homologies to known proteins. These analyses confirm the taxonomic position of C. glutamicum as related to Mycobacteria and show a broad metabolic diversity as expected for a bacterium living in the soil. As an example for biotechnological application the complete genome sequence was used to reconstruct the metabolic flow of carbon into a number of industrially important products derived from the amino acid L-aspartate.
        
Title: Expression and functional analysis of a gene cluster involved in the synthesis of decaprenoxanthin reveals the mechanisms for C50 carotenoid formation Krubasik P, Kobayashi M, Sandmann G Ref: European Journal of Biochemistry, 268:3702, 2001 : PubMed
Corynebacterium glutamicum accumulates the C50 carotenoid decaprenoxanthin. Rescued DNA from transposon color mutants of this Gram-positive bacterium was used to clone the carotenoid biosynthetic gene cluster. By sequence comparison and functional complementation, the genes involved in the synthesis of carotenoids with 50 carbon atoms were identified. The genes crtE, encoding a geranylgeranyl pyrophosphate synthase, crtB, encoding a phytoene synthase, and crtI, encoding a phytoene desaturase, are responsible for the formation of lycopene. The products of three novel genes, crtYe and crtYf, with sequence similarities to heterodimeric lycopene cyclase crtYc and crtYd, together with crtEb which exhibits a prenyl transferase motif, were involved in the conversion of C40 acyclic lycopene to cyclic C50 carotenoids. Using functional complementation in Escherichia coli, it could be shown that the elongation of lycopene to the acyclic C50 carotenoid flavuxanthin by the addition of C5 isoprenoid units at positions C-2 and C-2' is catalyzed by the crtEb gene product. Subsequently, the gene products of crtYe and crtYf in a concerted action convert the acyclic flavuxanthin into the cyclic C50 carotene, decaprenoxanthin, forming two epsilon-ionone groups. The mechanisms, involving two individual steps for the formation of cyclic C50 carotenoids from lycopene, are proposed on the basis of these results.