(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Viridiplantae: NE > Streptophyta: NE > Streptophytina: NE > Embryophyta: NE > Tracheophyta: NE > Euphyllophyta: NE > Spermatophyta: NE > Magnoliophyta: NE > Mesangiospermae: NE > eudicotyledons: NE > Gunneridae: NE > Pentapetalae: NE > asterids: NE > lamiids: NE > Gentianales: NE > Gentianaceae: NE > Gentianeae: NE > Gentiana: NE > Gentiana triflora: NE > Gentiana triflora var. japonica: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Gentiana pneumonanthe: N, E.
Gentiana septemfida: N, E.
Gentiana triflora: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSPTKHFVAVHGVGHGAWVYYKLKPRIEAAGFKFTAIDLAAAGVNPKKLE EVNSLEEYCGPLFDVLAAVPEGEKVILVGHSGGGLSAAVGMEKFPKKISV AVFLNAIMPDTKNRPSYVMEEYTARTPIEAWKDTQFSAYGEPPITALLCG PEFISTSLYHLSPVEDHTLGKLLVRPGALFVEDLLKGAVKFTDEGFGSVP RVYVVATEDKTIPPEFQRWMIENNPVAEVKEIEGADHLPQFSKPDELTQV LVDIAKNHG
Overwinter survival has to be under critical regulation in the lifecycle of herbaceous perennial plants. Gentians (Gentiana L.) maintain their perennial life style through producing dormant and freezing-tolerant overwinter buds (OWBs) to overcome cold winter. However, the mechanism acting on such an overwinter survival and the genes/proteins contributing to it have been poorly understood. Previously, we identified an OWB-enriched protein W14/15, a member of a group of alpha/beta hydrolase fold superfamily that is implicated in regulation of hormonal action in plants. The W14/15 gene has more than ten variant types in Gentiana species. However, roles of the W14/15 gene in OWB survival and functional difference among those variants have been unclear. In the present study, we examined whether the W14/15 gene variants are involved in the mechanism acting on overwinter survival, by crossing experiments using cultivars carrying different W14/15 variant alleles and virus-induced gene silencing experiments. We found that particular types of the W14/15 variants (W15a types) contributed toward obtaining high ability of overwinter survival, while other types (W14b types) did not, or even interfered with the former type gene. This study demonstrates two findings; first, contribution of esterase genes to winter hardiness, and second, paired set or paired partner among the allelic variants determines the ability of overwinter survival.
We have identified multiple alleles for a single gene termed W14/15. This gene encodes closely related but not identical proteins W14 and W15 that accumulate in overwinter buds of Gentiana triflora (Takahashi et al. in Breed Sci 56:39-46, 2006; Hikage et al. in Mol Genet Genomics 278:95-104, 2007). In this study, structural analysis of the W14/15 gene was carried out for 21 different gentian lines/cultivars consisting of 5 different species, to survey species- or line/cultivar-specific haplotypes. Within the samples examined, multiple variant forms were found. Those were categorized into seven major types (type I-VII) and ten subtypes based on the presence of three short insertion/deletion sites, three RFLP sites, and several SNP sites. Each line/cultivar had a distinct set of W14/15 gene variants for an allelic pair. Phylogenetic analysis showed that the W14/15 alleles cluster into groups that are characteristic of gentian species, i.e., G. triflora, G. scabra, G. pneumonanthe, G. septemfida and an unknown species other than the former four. In addition, within the same gentian species, different sets of haplotypes were found. Thus, the W14/15 alleles provide useful landmarks to resolve phylogenies of the genus or section Gentiana, as well as to analyze pedigree and breeding history of the cultivars derived from those Gentiana sp.
Previously, we identified two closely related proteins termed W14 and W15 that were enriched in the overwinter buds of the gentian plant Gentiana triflora. Expression of the latter protein W15 has been implicated in its association with cold hardiness, because of its absence in a cold-sensitive mutant. Here, we characterized these two proteins and the genes encoding them. Amino acid sequences of the W14 and W15 proteins showed difference at only three amino acid positions, and both of them showed homologies to alpha/beta hydrolase fold superfamily. Consistently, GST-fused W14 and W15 proteins expressed in bacteria showed hydrolase activity toward 1-naphtyl acetate. Structural analysis of these two genes in seven different gentian strains/cultivars including an anther culture-derived homozygous diploid revealed that W14 and W15 genes are allelic. Three genotypes were found; two strains carried both alleles (W14/W15), one carried the W15 genes in both alleles (W15/W15), and others were homozygous of W14 (W14/W14). Interestingly, expression of the two proteins exhibited allele-specificity. In one W14/W15 strain, expression of the W15 allele was almost repressed. In addition, organ specific expression of the alleles was observed in different cultivars. These observations were discussed in relation to winter hardiness of the gentian plants.