Homo sapiens (Human) Ccg1/TafII250-Interacting Factor B CIB MGC15429 Abhydrolase domain-containing protein 14B ABHD14B. lysine deacetylase
Comment
Alpha/beta hydrolase domain-containing protein 14B. The general transcription initiation factor TFIID and its interactors play critical roles in regulating the transcription. TFIID interactor CCG1/TAF(II)250-interacting factor B (CIB) activates transcription and has hydrolase activity towards p-nitrophenyl butyrate (in vitro). ABHD14B is able to transfer an acetyl group from a post-translationally acetylated-lysine to coenzyme A (CoA) and yield acetyl-CoA, while re-generating the free amine of protein lysine residues: lysine deacetylase (Rajendran et al. 2019)
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MAASVEQREGTIQVQGQALFFREALPGSGQARFSVLLLHGIRFSSETWQN LGTLHRLAQAGYRAVAIDLPGLGHSKEAAAPAPIGELAPGSFLAAVVDAL ELGPPVVISPSLSGMYSLPFLTAPGSQLPGFVPVAPICTDKINAANYASV KTPALIVYGDQDPMGQTSFEHLKQLPNHRVLIMKGAGHPCYLDKPEEWHT GLLDFLQGLQ
The sirtuins and histone deacetylases are the best characterized members of the lysine deacetylase (KDAC) enzyme family. Recently, we annotated the "orphan" enzyme ABHD14B (alpha/beta-hydrolase domain containing protein # 14B) as a novel KDAC, showed this enzyme's ability to transfer an acetyl-group from protein lysine residue(s) to coenzyme-A (CoA) to yield acetyl-CoA, expanding the repertoire of this enzyme family. However, the role of ABHD14B in metabolic processes is not fully elucidated. Here, we investigated the role of this enzyme using mammalian cell knockdowns in a combined transcriptomics, and metabolomics analysis. We found from these complementary experiments in vivo, that the loss of ABHD14B results in significantly altered glucose metabolism, specifically the decreased flux of glucose through glycolysis and the citric acid cycle. Further, we show that depleting hepatic ABHD14B in mice, also results in defective systemic glucose metabolism, particularly during fasting. Taken together, our findings illuminate the important metabolic functions that the KDAC ABHD14B plays in mammalian physiology, and poses new questions regarding the role of this hitherto cryptic metabolism-regulating enzyme.
The metabolic serine hydrolase family is, arguably, one of the largest functional enzyme classes in mammals, including humans, comprising 1-2% of the total proteome. This enzyme family uses a conserved nucleophilic serine residue in the active site to perform diverse hydrolytic reactions and consists of proteases, lipases, esterases, amidases, and transacylases, which are prototypical members of this family. In humans, this enzyme family consists of >250, of which approximately 40% members remain unannotated, in terms of both their endogenous substrates and the biological pathways that they regulate. The enzyme ABHD14B, an outlying member of this family, is also known as CCG1/TAFII250-interacting factor B, as it was found to be associated with transcription initiation factor TFIID. The crystal structure of human ABHD14B was determined more than a decade ago; however, its endogenous substrates remain elusive. In this paper, we annotate ABHD14B as a lysine deacetylase (KDAC), showing this enzyme's ability to transfer an acetyl group from a post-translationally acetylated lysine to coenzyme A (CoA), to yield acetyl-CoA, while regenerating the free amine of protein lysine residues. We validate these findings by in vitro biochemical assays using recombinantly purified human ABHD14B in conjunction with cellular studies in a mammalian cell line by knocking down ABHD14B and by identification of a putative substrate binding site. Finally, we report the development and characterization of a much-needed, exquisitely selective ABHD14B antibody, and using it, we map the cellular and tissue distribution of ABHD14B and prospective metabolic pathways that this enzyme might biologically regulate.
        
Title: Purification, crystallization and preliminary X-ray crystallographic analysis of human CCG1-interacting factor B Padmanabhan B, Kuzuhara T, Mizuno H, Horikoshi M Ref: Acta Crystallographica D Biol Crystallogr, 56:1479, 2000 : PubMed
A novel human factor CIB (CCG1-interacting factor B) has been isolated using the yeast two-hybrid system. The 22 kDa CIB protein has been expressed in Escherichia coli, purified to homogeneity and crystallized in a form suitable for crystallographic studies. The protein was crystallized in the orthogonal space group P2(1)2(1)2(1), with unit-cell parameters a = 43.60 (2), b = 44.45 (1), c = 110.70 (5) A and one molecule in the asymmetric unit. The crystal diffracted beyond 2.2 A resolution using synchrotron radiation.
The sirtuins and histone deacetylases are the best characterized members of the lysine deacetylase (KDAC) enzyme family. Recently, we annotated the "orphan" enzyme ABHD14B (alpha/beta-hydrolase domain containing protein # 14B) as a novel KDAC, showed this enzyme's ability to transfer an acetyl-group from protein lysine residue(s) to coenzyme-A (CoA) to yield acetyl-CoA, expanding the repertoire of this enzyme family. However, the role of ABHD14B in metabolic processes is not fully elucidated. Here, we investigated the role of this enzyme using mammalian cell knockdowns in a combined transcriptomics, and metabolomics analysis. We found from these complementary experiments in vivo, that the loss of ABHD14B results in significantly altered glucose metabolism, specifically the decreased flux of glucose through glycolysis and the citric acid cycle. Further, we show that depleting hepatic ABHD14B in mice, also results in defective systemic glucose metabolism, particularly during fasting. Taken together, our findings illuminate the important metabolic functions that the KDAC ABHD14B plays in mammalian physiology, and poses new questions regarding the role of this hitherto cryptic metabolism-regulating enzyme.
The metabolic serine hydrolase family is, arguably, one of the largest functional enzyme classes in mammals, including humans, comprising 1-2% of the total proteome. This enzyme family uses a conserved nucleophilic serine residue in the active site to perform diverse hydrolytic reactions and consists of proteases, lipases, esterases, amidases, and transacylases, which are prototypical members of this family. In humans, this enzyme family consists of >250, of which approximately 40% members remain unannotated, in terms of both their endogenous substrates and the biological pathways that they regulate. The enzyme ABHD14B, an outlying member of this family, is also known as CCG1/TAFII250-interacting factor B, as it was found to be associated with transcription initiation factor TFIID. The crystal structure of human ABHD14B was determined more than a decade ago; however, its endogenous substrates remain elusive. In this paper, we annotate ABHD14B as a lysine deacetylase (KDAC), showing this enzyme's ability to transfer an acetyl group from a post-translationally acetylated lysine to coenzyme A (CoA), to yield acetyl-CoA, while regenerating the free amine of protein lysine residues. We validate these findings by in vitro biochemical assays using recombinantly purified human ABHD14B in conjunction with cellular studies in a mammalian cell line by knocking down ABHD14B and by identification of a putative substrate binding site. Finally, we report the development and characterization of a much-needed, exquisitely selective ABHD14B antibody, and using it, we map the cellular and tissue distribution of ABHD14B and prospective metabolic pathways that this enzyme might biologically regulate.
After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chromosomes. Chromosome 3 comprises just four contigs, one of which currently represents the longest unbroken stretch of finished DNA sequence known so far. The chromosome is remarkable in having the lowest rate of segmental duplication in the genome. It also includes a chemokine receptor gene cluster as well as numerous loci involved in multiple human cancers such as the gene encoding FHIT, which contains the most common constitutive fragile site in the genome, FRA3B. Using genomic sequence from chimpanzee and rhesus macaque, we were able to characterize the breakpoints defining a large pericentric inversion that occurred some time after the split of Homininae from Ponginae, and propose an evolutionary history of the inversion.
The general transcription initiation factor TFIID and its interactors play critical roles in regulating the transcription from both naked and chromatin DNA. We have isolated a novel TFIID interactor that we denoted as CCG1/TAF(II)250-interacting factor B (CIB). We show here that CIB activates transcription. To further understand the function of this protein, we determined its crystal structure at 2.2-Angstroms resolution. The tertiary structure of CIB reveals an alpha/beta-hydrolase fold that resembles structures in the prokaryotic alpha/beta-hydrolase family proteins. It is not similar in structure or primary sequence to any eukaryotic transcription or chromatin factors that have been reported to date. CIB possesses a conserved catalytic triad that is found in other alpha/beta-hydrolases, and our in vitro studies confirmed that it bears hydrolase activity. However, CIB differs from other alpha/beta-hydrolases in that it lacks a binding site excursion, which facilitates the substrate selectivity of the other alpha/beta-hydrolases. Further functional characterization of CIB based on its tertiary structure and through biochemical studies may provide novel insights into the mechanisms that regulate eukaryotic transcription.
        
Title: Purification, crystallization and preliminary X-ray crystallographic analysis of human CCG1-interacting factor B Padmanabhan B, Kuzuhara T, Mizuno H, Horikoshi M Ref: Acta Crystallographica D Biol Crystallogr, 56:1479, 2000 : PubMed
A novel human factor CIB (CCG1-interacting factor B) has been isolated using the yeast two-hybrid system. The 22 kDa CIB protein has been expressed in Escherichia coli, purified to homogeneity and crystallized in a form suitable for crystallographic studies. The protein was crystallized in the orthogonal space group P2(1)2(1)2(1), with unit-cell parameters a = 43.60 (2), b = 44.45 (1), c = 110.70 (5) A and one molecule in the asymmetric unit. The crystal diffracted beyond 2.2 A resolution using synchrotron radiation.