Homo sapiens (Human) DAGLB Sn1-specific diacylglycerol lipase beta kccr13l FLJ36639
Comment
Catalyzes the hydrolysis of diacylglycerol (DAG) to 2-arachidonoyl-glycerol (2-AG), the most abundant endocannabinoid in tissues. Required for axonal growth during development and for retrograde synaptic signaling at mature synapses.DAGLB hydrolyses diacyglycerols preferencially on the sn-1 position. Deficiency in endocannabinoid synthase DAGLB contributes to early onset Parkinsonism and murine nigral dopaminergic neuron dysfunction. (Liu et al.)
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
3kbDel_human-DAGLB : Deficiency in endocannabinoid synthase DAGLB contributes to early onset Parkinsonism and murine nigral dopaminergic neuron dysfunction D363G_human-DAGLB : Deficiency in endocannabinoid synthase DAGLB contributes to early onset Parkinsonism and murine nigral dopaminergic neuron dysfunction L158SfsX17_human-DAGLB : Deficiency in endocannabinoid synthase DAGLB contributes to early onset Parkinsonism and murine nigral dopaminergic neuron dysfunction c.1821-2A>G_human-DAGLB : Deficiency in endocannabinoid synthase DAGLB contributes to early onset Parkinsonism and murine nigral dopaminergic neuron dysfunction
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MPGMVLFGRRWAIASDDLVFPGFFELVVRVLWWIGILTLYLMHRGKLDCA GGALLSSYLIVLMILLAVVICTVSAIMCVSMRGTICNPGPRKSMSKLLYI RLALFFPEMVWASLGAAWVADGVQCDRTVVNGIIATVVVSWIIIAATVVS IIIVFDPLGGKMAPYSSAGPSHLDSHDSSQLLNGLKTAATSVWETRIKLL CCCIGKDDHTRVAFSSTAELFSTYFSDTDLVPSDIAAGLALLHQQQDNIR NNQEPAQVVCHAPGSSQEADLDAELENCHHYMQFAAAAYGWPLYIYRNPL TGLCRIGGDCCRSRTTDYDLVGGDQLNCHFGSILHTTGLQYRDFIHVSFH DKVYELPFLVALDHRKESVVVAVRGTMSLQDVLTDLSAESEVLDVECEVQ DRLAHKGISQAARYVYQRLINDGILSQAFSIAPEYRLVIVGHSLGGGAAA LLATMLRAAYPQVRCYAFSPPRGLWSKALQEYSQSFIVSLVLGKDVIPRL SVTNLEDLKRRILRVVAHCNKPKYKILLHGLWYELFGGNPNNLPTELDGG DQEVLTQPLLGEQSLLTRWSPAYSFSSDSPLDSSPKYPPLYPPGRIIHLQ EEGASGRFGCCSAAHYSAKWSHEAEFSKILIGPKMLTDHMPDILMRALDS VVSDRAACVSCPAQGVSSVDVA
INTRODUCTION: Lipids and fatty acids are key components in metabolic processes of the human placenta, thereby contributing to the development of the fetus. Placental dyslipidemia and aberrant activity of lipases have been linked to diverse pregnancy associated complications, such as preeclampsia and preterm birth. The serine hydrolases, diacylglycerol lipase alpha and beta (DAGLalpha, DAGLbeta) catalyze the degradation of diacylglycerols, leading to the formation of monoacylglycerols (MAG), including one main endocannabinoid 2-arachidonoylglycerol (2-AG). The major role of DAGL in the biosynthesis of 2-AG is evident from various studies in mice but has not been investigated in the human placenta. Here, we report the use of the small molecule inhibitor DH376, in combination with the ex vivo placental perfusion system, activity-based protein profiling (ABPP) and lipidomics, to determine the impact of acute DAGL inhibition on placental lipid networks. METHODS: DAGLalpha and DAGLbeta mRNA expression was detected by RT-qPCR and in situ hybridization in term placentas. Immunohistochemistry staining for CK7, CD163 and VWF was applied to localize DAGLbeta transcripts to different cell types of the placenta. DAGLbeta activity was determined by in- gel and MS-based activity-based protein profiling (ABPP) and validated by addition of the enzyme inhibitors LEI-105 and DH376. Enzyme kinetics were measured by EnzChek lipase substrate assay. Ex vivo placental perfusion experiments were performed +/- DH376 [1 microM] and changes in tissue lipid and fatty acid profiles were measured by LC-MS. Additionally, free fatty acid levels of the maternal and fetal circulations were determined. RESULTS: We demonstrate that mRNA expression of DAGLbeta prevails in placental tissue, compared to DAGLalpha (p >= 0.0001) and that DAGLbeta is mainly located to CK7 positive trophoblasts (p >= 0.0001). Although few DAGLalpha transcripts were identified, no active enzyme was detected applying in-gel or MS-based ABPP, which underlined that DAGLbeta is the principal DAGL in the placenta. DAGLbeta dependent substrate hydrolysis in placental membrane lysates was determined by the application of LEI-105 and DH376. Ex vivo pharmacological inhibition of DAGLbeta by DH376 led to reduced MAG tissue levels (p >= 0.01), including 2-AG (p>=0.0001). We further provide an activity landscape of serine hydrolases, showing a broad spectrum of metabolically active enzymes in the human placenta. DISCUSSION: Our results emphasize the role of DAGLbeta activity in the human placenta by determining the biosynthesis of 2-AG. Thus, this study highlights the special importance of intra-cellular lipases in lipid network regulation. Together, the activity of these specific enzymes may contribute to the lipid signaling at the maternal-fetal interface, with implications for function of the placenta in normal and compromised pregnancies.
Sickle cell disease (SCD) is the most common inherited disease. Pain is a key morbidity of SCD and opioids are the main treatment but their side effects emphasize the need for new analgesic approaches. Humanized transgenic mouse models have been instructive in understanding the pathobiology of SCD and mechanisms of pain. Homozygous (HbSS) Berkley mice express >99% human sickle hemoglobin and several features of clinical SCD including hyperalgesia. Previously, we reported that the endocannabinoid 2-arachidonoylglycerol (2-AG) is a precursor of the pro-nociceptive mediator prostaglandin E2-glyceryl ester (PGE2-G) which contributes to hyperalgesia in SCD. We now demonstrate the causal role of 2-AG in hyperalgesia in sickle mice. Hyperalgesia in HbSS mice correlated with elevated levels of 2-AG in plasma, its synthesizing enzyme diacylglycerol lipase beta (DAGLbeta) in blood cells, and with elevated levels of PGE2 and PGE2-G, pro-nociceptive derivatives of 2-AG. A single intravenous injection of 2-AG produced hyperalgesia in non-hyperalgesic HbSS mice, but not in control (HbAA) mice expressing normal human HbA. JZL184, an inhibitor of 2-AG hydrolysis also produced hyperalgesia in non-hyperalgesic HbSS or hemizygous (HbAS) mice, but did not influence hyperalgesia in hyperalgesic HbSS mice. Systemic and intraplantar administration of KT109, an inhibitor of DAGLbeta, decreased mechanical and heat hyperalgesia in HbSS mice. The decrease in hyperalgesia was accompanied by reductions in 2-AG, PGE2 and PGE2-G in the blood. These results indicate that maintaining the physiological level of 2-AG in the blood by targeting DAGLbeta may be a novel and effective approach to treat pain in SCD.
Endocannabinoid (eCB), 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain, regulates diverse neural functions. Here we linked multiple homozygous loss-of-function mutations in 2-AG synthase diacylglycerol lipase beta (DAGLB) to an early onset autosomal recessive Parkinsonism. DAGLB is the main 2-AG synthase in human and mouse substantia nigra (SN) dopaminergic neurons (DANs). In mice, the SN 2-AG levels were markedly correlated with motor performance during locomotor skill acquisition. Genetic knockdown of Daglb in nigral DANs substantially reduced SN 2-AG levels and impaired locomotor skill learning, particularly the across-session learning. Conversely, pharmacological inhibition of 2-AG degradation increased nigral 2-AG levels, DAN activity and dopamine release and rescued the locomotor skill learning deficits. Together, we demonstrate that DAGLB-deficiency contributes to the pathogenesis of Parkinsonism, reveal the importance of DAGLB-mediated 2-AG biosynthesis in nigral DANs in regulating neuronal activity and dopamine release, and suggest potential benefits of 2-AG augmentation in alleviating Parkinsonism.
INTRODUCTION: Lipids and fatty acids are key components in metabolic processes of the human placenta, thereby contributing to the development of the fetus. Placental dyslipidemia and aberrant activity of lipases have been linked to diverse pregnancy associated complications, such as preeclampsia and preterm birth. The serine hydrolases, diacylglycerol lipase alpha and beta (DAGLalpha, DAGLbeta) catalyze the degradation of diacylglycerols, leading to the formation of monoacylglycerols (MAG), including one main endocannabinoid 2-arachidonoylglycerol (2-AG). The major role of DAGL in the biosynthesis of 2-AG is evident from various studies in mice but has not been investigated in the human placenta. Here, we report the use of the small molecule inhibitor DH376, in combination with the ex vivo placental perfusion system, activity-based protein profiling (ABPP) and lipidomics, to determine the impact of acute DAGL inhibition on placental lipid networks. METHODS: DAGLalpha and DAGLbeta mRNA expression was detected by RT-qPCR and in situ hybridization in term placentas. Immunohistochemistry staining for CK7, CD163 and VWF was applied to localize DAGLbeta transcripts to different cell types of the placenta. DAGLbeta activity was determined by in- gel and MS-based activity-based protein profiling (ABPP) and validated by addition of the enzyme inhibitors LEI-105 and DH376. Enzyme kinetics were measured by EnzChek lipase substrate assay. Ex vivo placental perfusion experiments were performed +/- DH376 [1 microM] and changes in tissue lipid and fatty acid profiles were measured by LC-MS. Additionally, free fatty acid levels of the maternal and fetal circulations were determined. RESULTS: We demonstrate that mRNA expression of DAGLbeta prevails in placental tissue, compared to DAGLalpha (p >= 0.0001) and that DAGLbeta is mainly located to CK7 positive trophoblasts (p >= 0.0001). Although few DAGLalpha transcripts were identified, no active enzyme was detected applying in-gel or MS-based ABPP, which underlined that DAGLbeta is the principal DAGL in the placenta. DAGLbeta dependent substrate hydrolysis in placental membrane lysates was determined by the application of LEI-105 and DH376. Ex vivo pharmacological inhibition of DAGLbeta by DH376 led to reduced MAG tissue levels (p >= 0.01), including 2-AG (p>=0.0001). We further provide an activity landscape of serine hydrolases, showing a broad spectrum of metabolically active enzymes in the human placenta. DISCUSSION: Our results emphasize the role of DAGLbeta activity in the human placenta by determining the biosynthesis of 2-AG. Thus, this study highlights the special importance of intra-cellular lipases in lipid network regulation. Together, the activity of these specific enzymes may contribute to the lipid signaling at the maternal-fetal interface, with implications for function of the placenta in normal and compromised pregnancies.
Sickle cell disease (SCD) is the most common inherited disease. Pain is a key morbidity of SCD and opioids are the main treatment but their side effects emphasize the need for new analgesic approaches. Humanized transgenic mouse models have been instructive in understanding the pathobiology of SCD and mechanisms of pain. Homozygous (HbSS) Berkley mice express >99% human sickle hemoglobin and several features of clinical SCD including hyperalgesia. Previously, we reported that the endocannabinoid 2-arachidonoylglycerol (2-AG) is a precursor of the pro-nociceptive mediator prostaglandin E2-glyceryl ester (PGE2-G) which contributes to hyperalgesia in SCD. We now demonstrate the causal role of 2-AG in hyperalgesia in sickle mice. Hyperalgesia in HbSS mice correlated with elevated levels of 2-AG in plasma, its synthesizing enzyme diacylglycerol lipase beta (DAGLbeta) in blood cells, and with elevated levels of PGE2 and PGE2-G, pro-nociceptive derivatives of 2-AG. A single intravenous injection of 2-AG produced hyperalgesia in non-hyperalgesic HbSS mice, but not in control (HbAA) mice expressing normal human HbA. JZL184, an inhibitor of 2-AG hydrolysis also produced hyperalgesia in non-hyperalgesic HbSS or hemizygous (HbAS) mice, but did not influence hyperalgesia in hyperalgesic HbSS mice. Systemic and intraplantar administration of KT109, an inhibitor of DAGLbeta, decreased mechanical and heat hyperalgesia in HbSS mice. The decrease in hyperalgesia was accompanied by reductions in 2-AG, PGE2 and PGE2-G in the blood. These results indicate that maintaining the physiological level of 2-AG in the blood by targeting DAGLbeta may be a novel and effective approach to treat pain in SCD.
Endocannabinoid (eCB), 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain, regulates diverse neural functions. Here we linked multiple homozygous loss-of-function mutations in 2-AG synthase diacylglycerol lipase beta (DAGLB) to an early onset autosomal recessive Parkinsonism. DAGLB is the main 2-AG synthase in human and mouse substantia nigra (SN) dopaminergic neurons (DANs). In mice, the SN 2-AG levels were markedly correlated with motor performance during locomotor skill acquisition. Genetic knockdown of Daglb in nigral DANs substantially reduced SN 2-AG levels and impaired locomotor skill learning, particularly the across-session learning. Conversely, pharmacological inhibition of 2-AG degradation increased nigral 2-AG levels, DAN activity and dopamine release and rescued the locomotor skill learning deficits. Together, we demonstrate that DAGLB-deficiency contributes to the pathogenesis of Parkinsonism, reveal the importance of DAGLB-mediated 2-AG biosynthesis in nigral DANs in regulating neuronal activity and dopamine release, and suggest potential benefits of 2-AG augmentation in alleviating Parkinsonism.
        
Title: In situ localization of diacylglycerol lipase alpha and beta producing an endocannabinoid 2-arachidonoylglycerol and of cannabinoid receptor 1 in the primary oocytes of postnatal mice Kamnate A, Sirisin J, Polsan Y, Chomphoo S, Watanabe M, Kondo H, Hipkaeo W Ref: Journal of Anatomy, :, 2021 : PubMed
In order to understand the mechanism of the endocannabinoid (eCB) signal, which has so far been shown to work in oocyte genesis and maturation, it is critical to clarify detailed localization of the eCB synthesizing enzyme molecules as well as receptors for eCBs in oocytes in the ovary in situ. For this purpose, diacylglycerol lipase (DGL) alpha and beta are involved in the synthesis of an eCB 2-arachidonoylglycerol (2-AG). DGLalpha/beta and the cannabinoid receptor 1 (CB1) for 2-AG were shown to be localized to the primary oocytes of postnatal mice using immuno-light and electron microscopy. It was found that two types of localization existed: first, immunoreactivities for DGLalpha and beta were weakly detected throughout the ooplasm in light microscopy for which the intracellular membranes of vesicles forming tiny scattered aggregates were responsible. Secondly, DGLbeta-immunoreactivity was distinctly confined to the nuage of Balbiani bodies and small nuage-derivative structures; both amorphous materials and membranes of vesicles were responsible for their localization. On the other hand, the weak immunoreactivity for CB1 was localized in a pattern similar to the first one for DGLs, but not found in a pattern for the Balbiani nuage. Two routes of functional exertion of 2-AG synthesized by DGLs were suggested from the two types of localization: one was that the eCB synthesized at all the sites of DGLs is released from the oocytes and exerts paracrine or autocrine effects on adjacent intra-ovarian cells as well as the oocytes themselves. The other was that the eCB synthesized within the nuage was involved in the modulation of the posttranscriptional processing of oocytes. Owing to the failure in the detection of CB1 in the Balbiani nuage, however, the validity of the latter possibility remains to be elucidated.
Background: The endogenous cannabinoid system modulates inflammatory signaling in a variety of pathological states, including traumatic brain injury (TBI). The selective expression of diacylglycerol lipase-beta (DAGL-beta), the 2-arachidonylglycerol biosynthetic enzyme, on resident immune cells of the brain (microglia) and the role of this pathway in neuroinflammation, suggest that this enzyme may contribute to TBI-induced neuroinflammation. Accordingly, we tested whether DAGL-beta(-/-) mice would show a protective phenotype from the deleterious consequences of TBI on cognitive and neurological motor functions. Materials and Methods: DAGL-beta(-/-) and -beta(+/+) mice were subjected to the lateral fluid percussion model of TBI and assessed for learning and memory in the Morris water maze (MWM) Fixed Platform (reference memory) and Reversal (cognitive flexibility) tasks, as well as in a cued MWM task to infer potential sensorimotor/motivational deficits. In addition, subjects were assessed for motor behavior (Rotarod and the Neurological Severity Score assays) and in the light/dark box and the elevated plus maze to infer whether these manipulations affected anxiety-like behavior. Finally, we also examined whether brain injury disrupts the ceramide/sphingolipid lipid signaling system and if DAGL-beta deletion offers protection. Results: TBI disrupted all measures of neurological motor function and reduced body weight, but did not affect body temperature or performance in common assays used to infer anxiety. TBI also impaired performance in MWM Fixed Platform and Reversal tasks, but did not affect cued MWM performance. Although no differences were found between DAGL-beta(-/-) and -beta(+/+) mice in any of these measures, male DAGL-beta(-/-) mice displayed an unexpected survival-protective phenotype, which persisted at increased injury severities. In contrast, TBI did not elicit mortality in female mice regardless of genotype. TBI also produced significant changes in sphingolipid profiles (a family of lipids, members of which have been linked to both apoptotic and antiapoptotic pathways), in which DAGL-beta deletion modestly altered levels of select species. Conclusions: These findings indicate that although DAGL-beta does not play a necessary role in TBI-induced cognitive and neurological function, it appears to contribute to the increased vulnerability of male mice to TBI-induced mortality, whereas female mice show high survival rates irrespective of DAGL-beta expression.
Diacylglycerol lipases (DAGLalpha and DAGLbeta) convert diacylglycerol to the endocannabinoid 2-arachidonoylglycerol. Our understanding of DAGL function has been hindered by a lack of chemical probes that can perturb these enzymes in vivo. Here, we report a set of centrally active DAGL inhibitors and a structurally related control probe and their use, in combination with chemical proteomics and lipidomics, to determine the impact of acute DAGL blockade on brain lipid networks in mice. Within 2 h, DAGL inhibition produced a striking reorganization of bioactive lipids, including elevations in DAGs and reductions in endocannabinoids and eicosanoids. We also found that DAGLalpha is a short half-life protein, and the inactivation of DAGLs disrupts cannabinoid receptor-dependent synaptic plasticity and impairs neuroinflammatory responses, including lipopolysaccharide-induced anapyrexia. These findings illuminate the highly interconnected and dynamic nature of lipid signaling pathways in the brain and the central role that DAGL enzymes play in regulating this network.
The diacylglycerol lipases (DAGLalpha and DAGLbeta) hydrolyze DAG to generate 2-arachidonoylglycerol (2-AG), the principal endocannabinoid and main precursor of arachidonic acid (AA). The DAGLs make distinct tissue specific contributions toward 2-AG and AA levels, and therefore, selective modulators for these enzymes could play crucial roles toward harnessing their therapeutic potential. Relatively high-throughput assays have recently been reported for DAGLalpha and have proven useful toward the characterization of inhibitors of this enzyme. Similar assays are also warranted for DAGLbeta which was the aim of this study. We first adapted previously reported DAGLalpha membrane assays (using PNPB and DiFMUO as substrates) to measure recombinant DAGLbeta activity in membranes. In contrast to results with DAGLalpha, both substrates provided a relatively limited signal window for measuring DAGLbeta activity, however, an improved window was obtained when employing a third commercially available substrate, EnzChek. In order to further improve on the assay parameters, we successfully purified the glutathione S-transferase (GST) tagged catalytic domain of DAGLbeta. Activity of the enzyme was confirmed using EnzChek as well as two DAGL inhibitors (THL and OMDM-188). The purified DAGLbeta catalytic domain assay described here provides the basis for a relatively clean and convenient assay with the potential to be adapted for high-throughput drug discovery efforts.
Diacylglycerol lipase (DAGL)-alpha and -beta are enzymes responsible for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). Selective and reversible inhibitors are required to study the function of DAGLs in neuronal cells in an acute and temporal fashion, but they are currently lacking. Here, we describe the identification of a highly selective DAGL inhibitor using structure-guided and a chemoproteomics strategy to characterize the selectivity of the inhibitor in complex proteomes. Key to the success of this approach is the use of comparative and competitive activity-based proteome profiling (ABPP), in which broad-spectrum and tailor-made activity-based probes are combined to report on the inhibition of a protein family in its native environment. Competitive ABPP with broad-spectrum fluorophosphonate-based probes and specific beta-lactone-based probes led to the discovery of alpha-ketoheterocycle LEI105 as a potent, highly selective, and reversible dual DAGL-alpha/DAGL-beta inhibitor. LEI105 did not affect other enzymes involved in endocannabinoid metabolism including abhydrolase domain-containing protein 6, abhydrolase domain-containing protein 12, monoacylglycerol lipase, and fatty acid amide hydrolase and did not display affinity for the cannabinoid CB1 receptor. Targeted lipidomics revealed that LEI105 concentration-dependently reduced 2-AG levels, but not anandamide levels, in Neuro2A cells. We show that cannabinoid CB1-receptor-mediated short-term synaptic plasticity in a mouse hippocampal slice model can be reduced by LEI105. Thus, we have developed a highly selective DAGL inhibitor and provide new pharmacological evidence to support the hypothesis that "on demand biosynthesis" of 2-AG is responsible for retrograde signaling.
BACKGROUND AND PURPOSE: The development of potent and selective inhibitors of the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG) via DAG lipases (DAGL) alpha and beta is just starting to be considered as a novel and promising source of pharmaceuticals for the treatment of disorders that might benefit from a reduction in endocannabinoid tone, such as hyperphagia in obese subjects. EXPERIMENTAL APPROACH: Three new fluorophosphonate compounds O-7458, O-7459 and O-7460 were synthesized and characterized in various enzymatic assays. The effects of O-7460 on high-fat diet intake were tested in mice. KEY RESULTS: Of the new compounds, O-7460 exhibited the highest potency (IC50 = 690 nM) against the human recombinant DAGLalpha, and selectivity (IC50 > 10 muM) towards COS-7 cell and human monoacylglycerol lipase (MAGL), and rat brain fatty acid amide hydrolase. Competitive activity-based protein profiling confirmed that O-7460 inhibits mouse brain MAGL only at concentrations >/=10 muM, and showed that this compound has only one major 'off-target', that is, the serine hydrolase KIAA1363. O-7460 did not exhibit measurable affinity for human recombinant CB1 or CB2 cannabinoid receptors (Ki > 10 muM). In mouse neuroblastoma N18TG2 cells stimulated with ionomycin, O-7460 (10 muM) reduced 2-AG levels. When administered to mice, O-7460 dose-dependently (0-12 mg.kg(-1) , i.p.) inhibited the intake of a high-fat diet over a 14 h observation period, and, subsequently, slightly but significantly reduced body weight. CONCLUSIONS AND IMPLICATIONS: O-7460 might be considered a useful pharmacological tool to investigate further the role played by 2-AG both in vitro and in vivo under physiological as well as pathological conditions. LINKED ARTICLES: This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http:\/\/dx.doi.org/10.1111/bph.2013.169.issue-4 & http:\/\/dx.doi.org/10.1111/bph.2012.167.issue-8.
        
Title: Development and optimization of piperidyl-1,2,3-triazole ureas as selective chemical probes of endocannabinoid biosynthesis Hsu KL, Tsuboi K, Whitby LR, Speers AE, Pugh H, Inloes J, Cravatt BF Ref: Journal of Medicinal Chemistry, 56:8257, 2013 : PubMed
We have previously shown that 1,2,3-triazole ureas (1,2,3-TUs) act as versatile class of irreversible serine hydrolase inhibitors that can be tuned to create selective probes for diverse members of this large enzyme class, including diacylglycerol lipase-beta (DAGLbeta), a principal biosynthetic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). Here, we provide a detailed account of the discovery, synthesis, and structure-activity relationship (SAR) of (2-substituted)-piperidyl-1,2,3-TUs that selectively inactivate DAGLbeta in living systems. Key to success was the use of activity-based protein profiling (ABPP) with broad-spectrum and tailored activity-based probes to guide our medicinal chemistry efforts. We also describe an expanded repertoire of DAGL-tailored activity-based probes that includes biotinylated and alkyne agents for enzyme enrichment coupled with mass spectrometry-based proteomics and assessment of proteome-wide selectivity. Our findings highlight the broad utility of 1,2,3-TUs for serine hydrolase inhibitor development and their application to create selective probes of endocannabinoid biosynthetic pathways.
The endocannabinoid 2-arachidonoylglycerol (2-AG) is biosynthesized by diacylglycerol lipases DAGLalpha and DAGLbeta. Chemical probes to perturb DAGLs are needed to characterize endocannabinoid function in biological processes. Here we report a series of 1,2,3-triazole urea inhibitors, along with paired negative-control and activity-based probes, for the functional analysis of DAGLbeta in living systems. Optimized inhibitors showed high selectivity for DAGLbeta over other serine hydrolases, including DAGLalpha ( approximately 60-fold selectivity), and the limited off-targets, such as ABHD6, were also inhibited by the negative-control probe. Using these agents and Daglb(-/-) mice, we show that DAGLbeta inactivation lowers 2-AG, as well as arachidonic acid and eicosanoids, in mouse peritoneal macrophages in a manner that is distinct and complementary to disruption of cytosolic phospholipase-A2. We observed a corresponding reduction in lipopolysaccharide-induced tumor necrosis factor-alpha release. These findings indicate that DAGLbeta is a key metabolic hub within a lipid network that regulates proinflammatory responses in macrophages.
        
Title: DAGL-dependent endocannabinoid signalling: roles in axonal pathfinding, synaptic plasticity and adult neurogenesis Oudin MJ, Hobbs C, Doherty P Ref: European Journal of Neuroscience, 34:1634, 2011 : PubMed
Until recently, endocannabinoid (eCB) signalling was largely studied in the context of synaptic plasticity in the postnatal brain in the absence of detailed knowledge of the nature of the enzyme(s) responsible for the synthesis of the eCBs. However, the identification of two diacylglycerol lipases (DAGLalpha and DAGLbeta) responsible for the synthesis of 2-arachidonoylglycerol (2-AG) has increased the understanding of where this eCB is synthesised in relationship to the expression of cannabinoid receptor (CB)1 and CB2. Furthermore, the generation of knockout animals for each enzyme has allowed for the direct testing of their importance for established and emerging eCB functions. Based on this, we now know that DAGLalpha is enriched in dendritic spines that appose CB1-positive synaptic terminals, and that 2-AG functions as a retrograde signal controlling synaptic strength throughout the nervous system. Consequently, we have built on the principle that expression of eCB components dictates function to identify additional physiological functions of this signalling cassette. A number of studies have now provided support for DAGL-dependent eCB signalling playing important roles in brain development and in cellular plasticity in the adult nervous system. In this article, we will review evidence based on the localisation of the enzymes, as well as from genetic and pharmacological studies, that show DAGL-dependent eCB signalling to play an important role in axonal growth and guidance during development, in retrograde synaptic signalling at mature synapses, and in the control of adult neurogenesis in the hippocampus and subventricular zone.
Although inhibitors of the enzymatic hydrolysis of the endocannabinoid 2-arachidonoylglycerol are available, they are either rather weak in vitro (IC(50)>30 microM) or their selectivity towards other proteins of the endocannabinoid system has not been tested. Here we describe the synthesis and activity in vitro and in vivo of a tetrahydrolipstatin analogue, OMDM169, as a potent inhibitor of 2-AG hydrolysis, capable of enhancing 2-AG levels and of exerting analgesic activity via indirect activation of cannabinoid receptors. OMDM169 exhibited 0.13 microM10 microM) at human CB(1) and CB(2) receptors. However, OMDM169 shared with tetrahydrolipstatin the capability of inhibiting the human pancreatic lipase (IC(50)=0.6 microM). OMDM169 inhibited fatty acid amide hydrolase and diacylglycerol lipase only at higher concentrations (IC(50)=3.0 and 2.8 microM, respectively), and, accordingly, it increased by approximately 1.6-fold the levels of 2-AG, but not anandamide, in intact ionomycin-stimulated N18TG2 neuroblastoma cells. Acute intraperitoneal (i.p.) administration of OMDM169 to mice inhibited the second phase of the formalin-induced nocifensive response with an IC(50) of approximately 2.5 mg/kg, and concomitantly elevated 2-AG, but not anandamide, levels in the ipsilateral paw of formalin-treated mice. The antinociceptive effect of OMDM169 was antagonized by antagonists of CB(1) and CB(2) receptors, AM251 and AM630, respectively (1 mg/kg, i.p.). OMDM69 might represent a template for the development of selective and even more potent inhibitors of 2-AG hydrolysis.
Enzymes for the biosynthesis and degradation of the endocannabinoid 2-arachidonoyl glycerol (2-AG) have been cloned and are the sn-1-selective-diacylglycerol lipases alpha and beta (DAGLalpha and beta) and the monoacylglycerol lipase (MAGL), respectively. Here, we used membranes from COS cells over-expressing recombinant human DAGLalpha to screen new synthetic substances as DAGLalpha inhibitors, and cytosolic fractions from wild-type COS cells to look for MAGL inhibitors. DAGLalpha and MAGL activities were assessed by using sn-1-[14C]-oleoyl-2-arachidonoyl-glycerol and 2-[3H]-arachidonoylglycerol as substrates, respectively. We screened known compounds as well as new phosphonate derivatives of oleic acid and fluoro-phosphinoyl esters of different length. Apart from the general lipase inhibitor tetrahydrolipstatin (orlistat) (IC50 approximately 60 nM), the most potent inhibitors of DAGLalpha were O-3640 [octadec-9-enoic acid-1-(fluoro-methyl-phosphoryloxymethyl)-propylester] (IC50 = 500 nM), and O-3841 [octadec-9-enoic acid 1-methoxymethyl-2-(fluoro-methyl-phosphinoyloxy)-ethyl ester] (IC50 = 160 nM). Apart from being almost inactive on MAGL, these two compounds showed high selectivity over rat liver triacylglycerol lipase, rat N-acylphosphatidyl-ethanolamine-selective phospholipase D (involved in anandamide biosynthesis), rat fatty acid amide hydrolase and human recombinant cannabinoid CB1 and CB2 receptors. Methylarachidonoyl-fluorophosphonate and the novel compound UP-101 [O-ethyl-O-p-nitro-phenyl oleylphosphonate] inhibited both DAGLalpha and MAGL with similar potencies (IC50 = 0.8-0.1 and 3.7-3.2 microM, respectively). Thus, we report the first potent and specific inhibitors of the biosynthesis of 2-AG that may be used as pharmacological tools to investigate the biological role of this endocannabinoid.
As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.
Diacylglycerol (DAG) lipase activity is required for axonal growth during development and for retrograde synaptic signaling at mature synapses. This enzyme synthesizes the endocannabinoid 2-arachidonoyl-glycerol (2-AG), and the CB1 cannabinoid receptor is also required for the above responses. We now report on the cloning and enzymatic characterization of the first specific sn-1 DAG lipases. Two closely related genes have been identified and their expression in cells correlated with 2-AG biosynthesis and release. The expression of both enzymes changes from axonal tracts in the embryo to dendritic fields in the adult, and this correlates with the developmental change in requirement for 2-AG synthesis from the pre- to the postsynaptic compartment. This switch provides a possible explanation for a fundamental change in endocannabinoid function during brain development. Identification of these enzymes may offer new therapeutic opportunities for a wide range of disorders.