Transmembrane scaffolding protein involved in cell-cell interactions via its interactions with neurexin family members. Mediates cell-cell interactions both in neurons and in other types of cells, such as Langerhans beta cells. Plays a role in synapse function and synaptic signal transmission, especially via gamma-aminobutyric acid receptors (GABA(A) receptors). Functions by recruiting and clustering synaptic proteins. Promotes clustering of postsynaptic GABRG2 and GPHN. Modulates signaling by inhibitory synapses, and thereby plays a role in controlling the ratio of signaling by excitatory and inhibitory synapses and information processing. Required for normal signal amplitude from inhibitory synapses, but is not essential for normal signal frequency. May promote the initial formation of synapses, but is not essential for this. In vitro, triggers the de novo formation of presynaptic structures. Mediates cell-cell interactions between Langerhans beta cells and modulates insulin secretion
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Hominoidea: NE > Hominidae: NE > Homininae: NE > Homo: NE > Homo sapiens: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MWLLALCLVGLAGAQRGGGGPGGGAPGGPGLGLGSLGEERFPVVNTAYGR VRGVRRELNNEILGPVVQFLGVPYATPPLGARRFQPPEAPASWPGVRNAT TLPPACPQNLHGALPAIMLPVWFTDNLEAAATYVQNQSEDCLYLNLYVPT EDGPLTKKRDEATLNPPDTDIRDPGKKPVMLFLHGGSYMEGTGNMFDGSV LAAYGNVIVATLNYRLGVLGFLSTGDQAAKGNYGLLDQIQALRWLSENIA HFGGDPERITIFGSGAGASCVNLLILSHHSEGLFQKAIAQSGTAISSWSV NYQPLKYTRLLAAKVGCDREDSAEAVECLRRKPSRELVDQDVQPARYHIA FGPVVDGDVVPDDPEILMQQGEFLNYDMLIGVNQGEGLKFVEDSAESEDG VSASAFDFTVSNFVDNLYGYPEGKDVLRETIKFMYTDWADRDNGEMRRKT LLALFTDHQWVAPAVATAKLHADYQSPVYFYTFYHHCQAEGRPEWADAAH GDELPYVFGVPMVGATDLFPCNFSKNDVMLSAVVMTYWTNFAKTGDPNQP VPQDTKFIHTKPNRFEEVVWSKFNSKEKQYLHIGLKPRVRDNYRANKVAF WLELVPHLHNLHTELFTTTTRLPPYATRWPPRPPAGAPGTRRPPPPATLP PEPEPEPGPRAYDRFPGDSRDYSTELSVTVAVGASLLFLNILAFAALYYK RDRRQELRCRRLSPPGGSGSGVPGGGPLLPAAGRELPPEEELVSLQLKRG GGVGADPAEALRPACPPDYTLALRRAPDDVPLLAPGALTLLPSGLGPPPP PPPPSLHPFGPFPPPPPTATSHNNTLPHPHSTTRV
References
8 moreTitle: Expression and structural analysis of human neuroligin 2 and neuroligin 3 implicated in autism spectrum disorders Zhang Z, Hou M, Ou H, Wang D, Li Z, Zhang H, Lu J Ref: Front Endocrinol (Lausanne), 13:1067529, 2022 : PubMed
The development of autism spectrum disorders (ASDs) involves both environmental factors such as maternal diabetes and genetic factors such as neuroligins (NLGNs). NLGN2 and NLGN3 are two members of NLGNs with distinct distributions and functions in synapse development and plasticity. The relationship between maternal diabetes and NLGNs, and the distinct working mechanisms of different NLGNs currently remain unclear. Here, we first analyzed the expression levels of NLGN2 and NLGN3 in a streptozotocin-induced ASD mouse model and different brain regions to reveal their differences and similarities. Then, cryogenic electron microscopy (cryo-EM) structures of human NLGN2 and NLGN3 were determined. The overall structures are similar to their homologs in previous reports. However, structural comparisons revealed the relative rotations of two protomers in the homodimers of NLGN2 and NLGN3. Taken together with the previously reported NLGN2-MDGA1 complex, we speculate that the distinct assembly adopted by NLGN2 and NLGN3 may affect their interactions with MDGAs. Our results provide structural insights into the potential distinct mechanisms of NLGN2 and NLGN3 implicated in the development of ASD.
Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.
        
Title: Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro Nagase T, Kikuno R, Ishikawa KI, Hirosawa M, Ohara O Ref: DNA Research, 7:65, 2000 : PubMed
We have carried out a human cDNA sequencing project to accumulate information regarding the coding sequences of unidentified human genes. As an extension of the preceding reports, we herein present the entire sequences of 150 cDNA clones of unknown human genes, named KIAA1294 to KIAA1443, from two sets of size-fractionated human adult and fetal brain cDNA libraries. The average sizes of the inserts and corresponding open reading frames of cDNA clones analyzed here reached 4.8 kb and 2.7 kb (910 amino acid residues), respectively. From sequence similarities and protein motifs, 73 predicted gene products were functionally annotated and 97% of them were classified into the following four functional categories: cell signaling/communication, nucleic acid management, cell structure/motility and protein management. Additionally, the chromosomal loci of the genes were assigned by using human-rodent hybrid panels for those genes whose mapping data were not available in the public databases. The expression profiles of the genes were also studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.
        
8 lessTitle: Expression and structural analysis of human neuroligin 2 and neuroligin 3 implicated in autism spectrum disorders Zhang Z, Hou M, Ou H, Wang D, Li Z, Zhang H, Lu J Ref: Front Endocrinol (Lausanne), 13:1067529, 2022 : PubMed
The development of autism spectrum disorders (ASDs) involves both environmental factors such as maternal diabetes and genetic factors such as neuroligins (NLGNs). NLGN2 and NLGN3 are two members of NLGNs with distinct distributions and functions in synapse development and plasticity. The relationship between maternal diabetes and NLGNs, and the distinct working mechanisms of different NLGNs currently remain unclear. Here, we first analyzed the expression levels of NLGN2 and NLGN3 in a streptozotocin-induced ASD mouse model and different brain regions to reveal their differences and similarities. Then, cryogenic electron microscopy (cryo-EM) structures of human NLGN2 and NLGN3 were determined. The overall structures are similar to their homologs in previous reports. However, structural comparisons revealed the relative rotations of two protomers in the homodimers of NLGN2 and NLGN3. Taken together with the previously reported NLGN2-MDGA1 complex, we speculate that the distinct assembly adopted by NLGN2 and NLGN3 may affect their interactions with MDGAs. Our results provide structural insights into the potential distinct mechanisms of NLGN2 and NLGN3 implicated in the development of ASD.
        
Title: GABAergic deficits and schizophrenia-like behaviors in a mouse model carrying patient-derived neuroligin-2 R215H mutation Jiang DY, Wu Z, Forsyth CT, Hu Y, Yee SP, Chen G Ref: Mol Brain, 11:31, 2018 : PubMed
Schizophrenia (SCZ) is a severe mental disorder characterized by delusion, hallucination, and cognitive deficits. We have previously identified from schizophrenia patients a loss-of-function mutation Arg(215)-->His(215) (R215H) of neuroligin 2 (NLGN2) gene, which encodes a cell adhesion molecule critical for GABAergic synapse formation and function. Here, we generated a novel transgenic mouse line with neuroligin-2 (NL2) R215H mutation. The single point mutation caused a significant loss of NL2 protein in vivo, reduced GABAergic transmission, and impaired hippocampal activation. Importantly, R215H KI mice displayed anxiety-like behavior, impaired pre-pulse inhibition (PPI), cognition deficits and abnormal stress responses, recapitulating several key aspects of schizophrenia-like behaviors. Our results demonstrate a significant impact of a single point mutation NL2 R215H on brain functions, providing a novel animal model for the study of schizophrenia and neuropsychiatric disorders.
        
Title: Neuroligin 2 R215H Mutant Mice Manifest Anxiety, Increased Prepulse Inhibition, and Impaired Spatial Learning and Memory Chen CH, Lee PW, Liao HM, Chang PK Ref: Front Psychiatry, 8:257, 2017 : PubMed
Neuroligin 2 (NLGN2) is a postsynaptic adhesion protein that plays an essential role in synaptogenesis and function of inhibitory neuron. We previously identified a missense mutation R215H of the NLGN2 in a patient with schizophrenia. This missense mutation was shown to be pathogenic in several cell-based assays. The objective of this study was to better understand the behavioral consequences of this mutation in vivo. We generated a line of transgenic mice carrying this mutation using a recombinant-based method. The mice were subjected to a battery of behavioral tests including open field locomotor activity assay, prepulse inhibition (PPI) assay, accelerated rotarod test, novel location and novel recognition tests, elevated plus-maze (EPM) test, and Morris water maze test. The transgenic animals were viable and fertile, but the Nlgn2 R215H knock-in (KI) homozygous mice showed growth retardation, anxiety-like behavior, increased PPI, and impaired spatial learning and memory. There was no significant interaction between sex and genotype in most behavioral tests; however, we observed a significant interaction between sex and genotype in EPM test in this study. Also, we found that the Nlgn2 R215H homozygous KI mice did not express the NLGN2 protein, resembling Nlgn2 knockout mice. Our results demonstrate that Nlgn2 R215H KI homozygous mice manifest several behavioral abnormalities similar to those found in psychiatric patients carrying NLGN2 mutations, indicating that dysfunction of NLGN2 contributes to the pathogenesis of certain psychiatric symptoms commonly present in various mental disorders, not limited to schizophrenia.
Membrane-associated mucin domain-containing glycosylphosphatidylinositol anchor proteins (MDGAs) bind directly to neuroligin-1 (NL1) and neuroligin-2 (NL2), thereby respectively regulating excitatory and inhibitory synapse development. However, the mechanisms by which MDGAs modulate NL activity to specify development of the two synapse types remain unclear. Here, we determined the crystal structures of human NL2/MDGA1 Ig1-3 complex, revealing their stable 2:2 arrangement with three interaction interfaces. Cell-based assays using structure-guided, site-directed MDGA1 mutants showed that all three contact patches were required for the MDGA's negative regulation of NL2-mediated synaptogenic activity. Furthermore, MDGA1 competed with neurexins for NL2 via its Ig1 domain. The binding affinities of both MDGA1 and MDGA2 for NL1 and NL2 were similar, consistent with the structural prediction of similar binding interfaces. However, MDGA1 selectively associated with NL2, but not NL1, in vivo. These findings collectively provide structural insights into the mechanism by which MDGAs negatively modulate synapse development governed by NLs/neurexins.
Neuroligins are post-synaptic, cellular adhesion molecules implicated in synaptic formation and function. NLGN2 is strongly linked to inhibitory, GABAergic signaling and is crucial for maintaining the excitation-inhibition balance in the brain. Disruption of the excitation-inhibition balance is associated with neuropsychiatric disease. In animal models, altered NLGN2 expression causes anxiety, developmental delay, motor discoordination, social impairment, aggression, and sensory processing defects. In humans, mutations in NLGN3 and NLGN4 are linked to autism and schizophrenia; NLGN2 missense variants are implicated in schizophrenia. Copy number variants encompassing NLGN2 on 17p13.1 are associated with autism, intellectual disability, metabolic syndrome, diabetes, and dysmorphic features, but an isolated NLGN2 nonsense variant has not yet been described in humans. Here, we describe a 15-year-old male with severe anxiety, obsessive-compulsive behaviors, developmental delay, autism, obesity, macrocephaly, and some dysmorphic features. Exome sequencing identified a heterozygous, de novo, c.441C>A p.(Tyr147Ter) variant in NLGN2 that is predicted to cause loss of normal protein function. This is the first report of an NLGN2 nonsense variant in humans, adding to the accumulating evidence that links synaptic proteins with a spectrum of neurodevelopmental phenotypes. (c) 2016 Wiley Periodicals, Inc.
        
Title: Identification and functional characterization of rare mutations of the neuroligin-2 gene (NLGN2) associated with schizophrenia Sun C, Cheng MC, Qin R, Liao DL, Chen TT, Koong FJ, Chen G, Chen CH Ref: Hum Mol Genet, 20:3042, 2011 : PubMed
Schizophrenia is a severe chronic mental disorder with a high genetic component in its etiology. Several lines of study have suggested that synaptic dysfunction may underlie the pathogenesis of schizophrenia. Neuroligin proteins function as cell-adhesion molecules at post-synaptic membrane and play critical roles in synaptogenesis and synaptic maturation. In this study, we systemically sequenced all the exons and promoter region of neuroligin-2 (NLGN2) gene in a sample of 584 schizophrenia patients and 549 control subjects from Taiwan. In total, we identified 19 genetic variants, including six rare missense mutations such as R215H (one patient), V510M (two patients), R621H (one patient), A637T (two patients), P800L (one patient and one control) and A819S (one patient and one control). In silico analysis predicted that two patient-specific missense mutations, R215H and R621H, had damaging effect, whereas the other missense mutations were benign. Importantly, functional analysis with immunocytochemistry and electrophysiological recordings identified the R215H mutant as a loss-of-function mutant in inducing GABAergic synaptogenesis. Mechanistically, the synaptogenic deficiency of R215H mutant was due to its retention inside the endoplasmic reticulum and inability to be transported to cell membrane. Our study suggests that defects in GABAergic synapse formation in the brain may be an important contributing factor for the onset of schizophrenia. In the family study of this mutation, we found his elder brother also carried this mutation but did not have psychiatric symptoms, indicating that this mutation has incomplete penetrance, and thus the clinical relevance of this mutation should be interpreted with caution.
Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.
Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.
        
Title: Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro Nagase T, Kikuno R, Ishikawa KI, Hirosawa M, Ohara O Ref: DNA Research, 7:65, 2000 : PubMed
We have carried out a human cDNA sequencing project to accumulate information regarding the coding sequences of unidentified human genes. As an extension of the preceding reports, we herein present the entire sequences of 150 cDNA clones of unknown human genes, named KIAA1294 to KIAA1443, from two sets of size-fractionated human adult and fetal brain cDNA libraries. The average sizes of the inserts and corresponding open reading frames of cDNA clones analyzed here reached 4.8 kb and 2.7 kb (910 amino acid residues), respectively. From sequence similarities and protein motifs, 73 predicted gene products were functionally annotated and 97% of them were classified into the following four functional categories: cell signaling/communication, nucleic acid management, cell structure/motility and protein management. Additionally, the chromosomal loci of the genes were assigned by using human-rodent hybrid panels for those genes whose mapping data were not available in the public databases. The expression profiles of the genes were also studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.
Most neurons form synapses exclusively with other neurons, but little is known about the molecular mechanisms mediating synaptogenesis in the central nervous system. Using an in vitro system, we demonstrate that neuroligin-1 and -2, postsynaptically localized proteins, can trigger the de novo formation of presynaptic structure. Nonneuronal cells engineered to express neuroligins induce morphological and functional presynaptic differentiation in contacting axons. This activity can be inhibited by addition of a soluble version of beta-neurexin, a receptor for neuroligin. Furthermore, addition of soluble beta-neurexin to a coculture of defined pre- and postsynaptic CNS neurons inhibits synaptic vesicle clustering in axons contacting target neurons. Our results suggest that neuroligins are part of the machinery employed during the formation and remodeling of CNS synapses.
PSD-95 is a component of postsynaptic densities in central synapses. It contains three PDZ domains that localize N-methyl-D-aspartate receptor subunit 2 (NMDA2 receptor) and K+ channels to synapses. In mouse forebrain, PSD-95 bound to the cytoplasmic COOH-termini of neuroligins, which are neuronal cell adhesion molecules that interact with beta-neurexins and form intercellular junctions. Neuroligins bind to the third PDZ domain of PSD-95, whereas NMDA2 receptors and K+ channels interact with the first and second PDZ domains. Thus different PDZ domains of PSD-95 are specialized for distinct functions. PSD-95 may recruit ion channels and neurotransmitter receptors to intercellular junctions formed between neurons by neuroligins and beta-neurexins.