(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Gammaproteobacteria: NE > Alteromonadales: NE > Idiomarinaceae: NE > Idiomarina: NE > Idiomarina loihiensis: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Idiomarina loihiensis GSL 199: N, E.
Idiomarina loihiensis L2TR: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MKKWIITAAALMLSGTAAAQEKLQLEDIFTLEYASSPTIHPSGEWTVFVR QSMDINNDRKVGRLWASLPDGDIRPLTGSQGSESQPVWSPSGDRLAYVST ETGSPQVHIYWVDSGDSAAVTQLTQAPSGLSWSPDGSQIAFSMFTPKSQP APVSLPGKPEGADWTAAPKYIDKGNYRYDGGGYAKDGHQQIYVIPATGGS PRQLTDEEFNHGGQLSWSPDSKHIFFSANRRDDAFRQPVNSEIYRLTLST KEITAITERDGPDGSPKVSPNGEKIAFTGYDDTKMSFQASNLYVMDLDGS DVELLTGDLDHSVTGFEWDRDSEGVYFTYDNNGVGQLARTDLDGDHTQLT NRVGGLSYARPYGGGDFSVAKGDRIAFTISNPMRPAELALWDDGDVQQLT RLNEDALAHKQLAKVEEINYKSSVDGIDLQGWIAYPPGFDKDKDYPLMLE IHGGPHTNYGPRFAAEIQLFAAAGYVVLYTNPRGSTSYGSDFANEIHHNY PSHDYNDLMDGVDAVINKGFIDKDELYVTGGSGGGVLTAWIVGHTDRFKA AVVAKPVINWYSFVLTADMYNFFYQYWFPGLPWENMEHYMKYSPISYVGN VTTPTMLLTGENDYRTPMSETEQYYQALKLKGVDTAMVRIQDSGHGIYAR PSNLMNKVAYILHWFEKYRDE
We report the complete genome sequence of the deep-sea gamma-proteobacterium, Idiomarina loihiensis, isolated recently from a hydrothermal vent at 1,300-m depth on the Loihi submarine volcano, Hawaii. The I. loihiensis genome comprises a single chromosome of 2,839,318 base pairs, encoding 2,640 proteins, four rRNA operons, and 56 tRNA genes. A comparison of I. loihiensis to the genomes of other gamma-proteobacteria reveals abundance of amino acid transport and degradation enzymes, but a loss of sugar transport systems and certain enzymes of sugar metabolism. This finding suggests that I. loihiensis relies primarily on amino acid catabolism, rather than on sugar fermentation, for carbon and energy. Enzymes for biosynthesis of purines, pyrimidines, the majority of amino acids, and coenzymes are encoded in the genome, but biosynthetic pathways for Leu, Ile, Val, Thr, and Met are incomplete. Auxotrophy for Val and Thr was confirmed by in vivo experiments. The I. loihiensis genome contains a cluster of 32 genes encoding enzymes for exopolysaccharide and capsular polysaccharide synthesis. It also encodes diverse peptidases, a variety of peptide and amino acid uptake systems, and versatile signal transduction machinery. We propose that the source of amino acids for I. loihiensis growth are the proteinaceous particles present in the deep sea hydrothermal vent waters. I. loihiensis would colonize these particles by using the secreted exopolysaccharide, digest these proteins, and metabolize the resulting peptides and amino acids. In summary, the I. loihiensis genome reveals an integrated mechanism of metabolic adaptation to the constantly changing deep-sea hydrothermal ecosystem.