(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Saccharomycotina: NE > Saccharomycetes: NE > Saccharomycetales: NE > Phaffomycetaceae: NE > Komagataella: NE > Komagataella phaffii: NE > Komagataella phaffii CBS 7435: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Komagataella pastoris CBS 7435: N, E.
MPSWGFHNQIHATYSDKSVALKLKSGKNDFAPLNVIPFSTFIKTLVPELS
DGYKFNLHPFLFNGALQTLYASKADYSKEFQIYYGRCMVRYPEANHEYPH
LHLGQATADFVVDPPTEIDEWNYLYNQTLPEGWPRLHPRTRFLTVQEEQD
LEADWASNSGSIVVIIHGLAGGSHEPGIRDVSQHLHQAGFNVVTLNSRGC
CRSKLSTGRLYSAVETDDLRYFIDELHKKIPNKPIYLLGFSLGSALVLNY
LGEEGKKSFIKSAVTIGAPVDLLDSHYHLNHSYSGKYLFDPAVASFLSNL
VKVNFPILNRDKPEVFSYEKKSKDYLVRRIVDFDRKYTAPAYGFASPKYY
YQAGSPLTKLVNIYTPTVLLNSLDDPVVSCNLPVDEVKANPYLYLAASDL
GGHLAYIQWDGGFWFSEAVSAYFMAFESELSNEPAQSDYEPQLSEYSYKT
GI
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MPSWGFHNQIHATYSDKSVALKLKSGKNDFAPLNVIPFSTFIKTLVPELS DGYKFNLHPFLFNGALQTLYASKADYSKEFQIYYGRCMVRYPEANHEYPH LHLGQATADFVVDPPTEIDEWNYLYNQTLPEGWPRLHPRTRFLTVQEEQD LEADWASNSGSIVVIIHGLAGGSHEPGIRDVSQHLHQAGFNVVTLNSRGC CRSKLSTGRLYSAVETDDLRYFIDELHKKIPNKPIYLLGFSLGSALVLNY LGEEGKKSFIKSAVTIGAPVDLLDSHYHLNHSYSGKYLFDPAVASFLSNL VKVNFPILNRDKPEVFSYEKKSKDYLVRRIVDFDRKYTAPAYGFASPKYY YQAGSPLTKLVNIYTPTVLLNSLDDPVVSCNLPVDEVKANPYLYLAASDL GGHLAYIQWDGGFWFSEAVSAYFMAFESELSNEPAQSDYEPQLSEYSYKT GI
Reference
Title: Ester-Producing Mechanism of Ethanol O-acyltransferase EHT1 Gene in Pichia pastoris from Shanxi Aged Vinegar Chen J, Nan R, Wang R, Zhang L, Shi J Ref: Biomed Res Int, 2019:4862647, 2019 : PubMed
The ethanol O-acyltransferase EHT1 is an important element of key signaling pathways and is widely expressed in yeast strains. In this study, we investigated the expression of EHT1 in the overexpression lines or knockout system of Pichia pastoris using qRT-PCR and western blotting. The amount of total protein was determined using the Bradford method; the esterase activity was determined using p-nitrophenyl acetate as a substrate, and the production of volatile fatty acids in wild-type, knockout, and over-expression systems was detected using SPME GC-MS. The esterase activity of EHT1-knockout P. pastoris was significantly lower than that in wild type (P<0.01), and the activities of esterase in three EHT1-overexpressing strains-OE-1, OE-2, and OE-3-were significantly higher than those in wild type (P<0.01). In the EHT1-knockout strain products, the contents of nine volatile fatty acids were significantly lower than those in wild type (P<0.01), and the relative percentages of three fatty acids, methyl nonanoate, methyl decanoate, and ethyl caprate, were significantly lower than those in the other six species in the wild-type and knockout groups (P<0.05). The nine volatile fatty acids in the fermentation products of the overexpressed EHT1 gene were significantly higher than those in the wild-type group (P<0.01). The relative percentages of the three fatty acid esters, methyl nonanoate, methyl caprate, and ethyl caprate, were significantly higher than those in the other six species (P<0.05). EHT1 plays an important regulatory role in esterase activity and the production of medium-chain volatile fatty acids.