(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Firmicutes: NE > Bacilli: NE > Bacillales: NE > Listeriaceae: NE > Listeria: NE > Listeria innocua: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Listeria innocua FSL S4-378: N, E.
Listeria innocua FSL J1-023: N, E.
Listeria innocua ATCC 33091: N, E.
Listeria innocua Clip11262: N, E.
Listeria welshimeri serovar 6b str. SLCC5334: N, E.
Listeria monocytogenes FSL J2-071: N, E.
Listeria monocytogenes FSL J1-194: N, E.
Listeria monocytogenes HPB2262: N, E.
Listeria monocytogenes FSL N1-017: N, E.
Listeria monocytogenes L99: N, E.
Listeria monocytogenes FSL F2-208: N, E.
Listeria marthii FSL S4-120: N, E.
Listeria seeligeri FSL N1-067: N, E.
Listeria seeligeri FSL S4-171: N, E.
Listeria monocytogenes J1816: N, E.
Listeria monocytogenes J1-220: N, E.
Listeria monocytogenes str. Scott A: N, E.
Listeria monocytogenes: N, E.
Listeria monocytogenes serotype 4b str. LL195: N, E.
Listeria monocytogenes M7: N, E.
Listeria monocytogenes serotype 4b str. CLIP 80459: N, E.
Listeria monocytogenes serotype 4b str. F2365: N, E.
Listeria monocytogenes FSL R2-503: N, E.
Listeria monocytogenes serotype 4b str. H7858: N, E.
Listeria monocytogenes HCC23: N, E.
Listeria monocytogenes serotype 1/2a str. F6854: N, E.
Listeria monocytogenes F6900: N, E.
Listeria monocytogenes J2818: N, E.
Listeria monocytogenes 08-5923: N, E.
Listeria monocytogenes 08-5578: N, E.
Listeria monocytogenes FSL N3-165: N, E.
Listeria monocytogenes EGD-e: N, E.
Listeria monocytogenes J0161: N, E.
Listeria monocytogenes 10403S: N, E.
Listeria monocytogenes FSL R2-561: N, E.
Listeria monocytogenes Finland 1998: N, E.
Listeria monocytogenes FSL J1-208: N, E.
Listeria monocytogenes 07PF0776: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MKITPPQPFLFEKGKRAVLLLHGFTGSSADVRILGRFLQENNYTCYAPQY RGHGVSPDLLLKTGPNDWWEDVLAAYDHLKSLGYTEIAVAGLSLGGLFSL KLGFSRPLKGIIAMSTPTRMDSSSPIIQGFLDYVRNYKKLEGKTPEQIDA EMVAYKDAPMNTIAKLKDEINGVVSEIDMIYAPIMVVQGEKDDMVDVSGA QLIYDTVESTKKELHWFKESGHVITLDKERKDVNQAILTFLDSLDWQE
BACKGROUND: The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes. Initial evidence for multiple deletions of the prfA cluster during the evolution of Listeria indicates that this genus provides an interesting model for studying the evolution of virulence and also presents practical challenges with regard to definition of pathogenic strains. RESULTS: To better understand genome evolution and evolution of virulence characteristics in Listeria, we used a next generation sequencing approach to generate draft genomes for seven strains representing Listeria species or clades for which genome sequences were not available. Comparative analyses of these draft genomes and six publicly available genomes, which together represent the main Listeria species, showed evidence for (i) a pangenome with 2,032 core and 2,918 accessory genes identified to date, (ii) a critical role of gene loss events in transition of Listeria species from facultative pathogen to saprotroph, even though a consistent pattern of gene loss seemed to be absent, and a number of isolates representing non-pathogenic species still carried some virulence associated genes, and (iii) divergence of modern pathogenic and non-pathogenic Listeria species and strains, most likely circa 47 million years ago, from a pathogenic common ancestor that contained key virulence genes. CONCLUSIONS: Genome evolution in Listeria involved limited gene loss and acquisition as supported by (i) a relatively high coverage of the predicted pan-genome by the observed pan-genome, (ii) conserved genome size (between 2.8 and 3.2 Mb), and (iii) a highly syntenic genome. Limited gene loss in Listeria did include loss of virulence associated genes, likely associated with multiple transitions to a saprotrophic lifestyle. The genus Listeria thus provides an example of a group of bacteria that appears to evolve through a loss of virulence rather than acquisition of virulence characteristics. While Listeria includes a number of species-like clades, many of these putative species include clades or strains with atypical virulence associated characteristics. This information will allow for the development of genetic and genomic criteria for pathogenic strains, including development of assays that specifically detect pathogenic Listeria strains.
We present the complete genome sequence of Listeria welshimeri, a nonpathogenic member of the genus Listeria. Listeria welshimeri harbors a circular chromosome of 2,814,130 bp with 2,780 open reading frames. Comparative genomic analysis of chromosomal regions between L. welshimeri, Listeria innocua, and Listeria monocytogenes shows strong overall conservation of synteny, with the exception of the translocation of an F(o)F(1) ATP synthase. The smaller size of the L. welshimeri genome is the result of deletions in all of the genes involved in virulence and of "fitness" genes required for intracellular survival, transcription factors, and LPXTG- and LRR-containing proteins as well as 55 genes involved in carbohydrate transport and metabolism. In total, 482 genes are absent from L. welshimeri relative to L. monocytogenes. Of these, 249 deletions are commonly absent in both L. welshimeri and L. innocua, suggesting similar genome evolutionary paths from an ancestor. We also identified 311 genes specific to L. welshimeri that are absent in the other two species, indicating gene expansion in L. welshimeri, including horizontal gene transfer. The species L. welshimeri appears to have been derived from early evolutionary events and an ancestor more compact than L. monocytogenes that led to the emergence of nonpathogenic Listeria spp.
Listeria monocytogenes is a food-borne pathogen with a high mortality rate that has also emerged as a paradigm for intracellular parasitism. We present and compare the genome sequences of L. monocytogenes (2,944,528 base pairs) and a nonpathogenic species, L. innocua (3,011,209 base pairs). We found a large number of predicted genes encoding surface and secreted proteins, transporters, and transcriptional regulators, consistent with the ability of both species to adapt to diverse environments. The presence of 270 L. monocytogenes and 149 L. innocua strain-specific genes (clustered in 100 and 63 islets, respectively) suggests that virulence in Listeria results from multiple gene acquisition and deletion events.
        
2 lessTitle: Genetic distance in the whole-genome perspective on Listeria monocytogenes strains F2-382 and NIHS-28 that show similar subtyping results Kyoui D, Takahashi H, Miya S, Kuda T, Igimi S, Kimura B Ref: BMC Microbiol, 14:309, 2014 : PubMed
BACKGROUND: Genome subtyping approaches could provide useful epidemiological information regarding food pathogens. However, the full genomic diversity of strains that show similar subtyping results has not yet been completely explored. Most subtyping methods are based on the differences of only a portion of the genome. We investigated two draft genome sequences of Listeria monocytogenes strain F2-382 and NIHS-28, which have been identified as closely related strains by subtyping (identical multi-virulence-locus sequence typing and multiple-locus variable number tandem repeat analysis sequence types and very similar pulsed-field gel electrophoresis patterns), despite their different sources. RESULTS: Two closely related strains were compared by genome structure analysis, recombination analysis, and single nucleotide polymorphism (SNP) analysis. Both genome structure analysis and recombination analysis showed that these two strains are more closely related than other strains, from a whole-genome perspective. However, the analysis of SNPs indicated that the two strains differ at the single nucleotide level. CONCLUSION: We show the relationship between the results of genome subtyping and whole-genome sequencing. It appears that the relationships among strains indicated by genome subtyping methods are in accord with the relationships indicated by whole-genome analysis. However, our results also indicate that the genetic distance between the closely related strains is greater than that between clonal strains. Our results demonstrate that subtyping methods using a part of the genome are reliable in assessing the genetic distance of the strains. Furthermore, the genetic differences in the same subtype strains may provide useful information to distinguish the bacterial strains.
        
Title: Genome sequence of the nonpathogenic Listeria monocytogenes serovar 4a strain M7 Chen J, Xia Y, Cheng C, Fang C, Shan Y, Jin G, Fang W Ref: Journal of Bacteriology, 193:5019, 2011 : PubMed
This report presents the complete and annotated genome sequence of the naturally nonpathogenic Listeria monocytogenes serovar 4a strain M7, isolated from cow's milk in Zhejiang province, China.
BACKGROUND: The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes. Initial evidence for multiple deletions of the prfA cluster during the evolution of Listeria indicates that this genus provides an interesting model for studying the evolution of virulence and also presents practical challenges with regard to definition of pathogenic strains. RESULTS: To better understand genome evolution and evolution of virulence characteristics in Listeria, we used a next generation sequencing approach to generate draft genomes for seven strains representing Listeria species or clades for which genome sequences were not available. Comparative analyses of these draft genomes and six publicly available genomes, which together represent the main Listeria species, showed evidence for (i) a pangenome with 2,032 core and 2,918 accessory genes identified to date, (ii) a critical role of gene loss events in transition of Listeria species from facultative pathogen to saprotroph, even though a consistent pattern of gene loss seemed to be absent, and a number of isolates representing non-pathogenic species still carried some virulence associated genes, and (iii) divergence of modern pathogenic and non-pathogenic Listeria species and strains, most likely circa 47 million years ago, from a pathogenic common ancestor that contained key virulence genes. CONCLUSIONS: Genome evolution in Listeria involved limited gene loss and acquisition as supported by (i) a relatively high coverage of the predicted pan-genome by the observed pan-genome, (ii) conserved genome size (between 2.8 and 3.2 Mb), and (iii) a highly syntenic genome. Limited gene loss in Listeria did include loss of virulence associated genes, likely associated with multiple transitions to a saprotrophic lifestyle. The genus Listeria thus provides an example of a group of bacteria that appears to evolve through a loss of virulence rather than acquisition of virulence characteristics. While Listeria includes a number of species-like clades, many of these putative species include clades or strains with atypical virulence associated characteristics. This information will allow for the development of genetic and genomic criteria for pathogenic strains, including development of assays that specifically detect pathogenic Listeria strains.
We present the complete genome sequence of Listeria welshimeri, a nonpathogenic member of the genus Listeria. Listeria welshimeri harbors a circular chromosome of 2,814,130 bp with 2,780 open reading frames. Comparative genomic analysis of chromosomal regions between L. welshimeri, Listeria innocua, and Listeria monocytogenes shows strong overall conservation of synteny, with the exception of the translocation of an F(o)F(1) ATP synthase. The smaller size of the L. welshimeri genome is the result of deletions in all of the genes involved in virulence and of "fitness" genes required for intracellular survival, transcription factors, and LPXTG- and LRR-containing proteins as well as 55 genes involved in carbohydrate transport and metabolism. In total, 482 genes are absent from L. welshimeri relative to L. monocytogenes. Of these, 249 deletions are commonly absent in both L. welshimeri and L. innocua, suggesting similar genome evolutionary paths from an ancestor. We also identified 311 genes specific to L. welshimeri that are absent in the other two species, indicating gene expansion in L. welshimeri, including horizontal gene transfer. The species L. welshimeri appears to have been derived from early evolutionary events and an ancestor more compact than L. monocytogenes that led to the emergence of nonpathogenic Listeria spp.
Listeria monocytogenes is a food-borne pathogen with a high mortality rate that has also emerged as a paradigm for intracellular parasitism. We present and compare the genome sequences of L. monocytogenes (2,944,528 base pairs) and a nonpathogenic species, L. innocua (3,011,209 base pairs). We found a large number of predicted genes encoding surface and secreted proteins, transporters, and transcriptional regulators, consistent with the ability of both species to adapt to diverse environments. The presence of 270 L. monocytogenes and 149 L. innocua strain-specific genes (clustered in 100 and 63 islets, respectively) suggests that virulence in Listeria results from multiple gene acquisition and deletion events.