Monoacylglycerol lipase ABHD6 hydrolyses the endocannabinoid 2-arachidonoylglycerol (2-AG). 2-AG regulates neurotransmission and neuroinflammation by activating CB1 cannabinoid receptors on neurons and CB2 cannabinoid receptors on microglia. (A MGLL human-MGLL or MAGLL is the other enzympe hydrolyzing 26AG.(belong to Monoglyceridelipase_lysophospholip family) ABHD6 of animals is homologous to some bacterial enzymes. For bacterial enzymes, this family correspond to family V.1 of the classification of Arpigny and Jaeger 1999. Alpha/beta-Hydrolase domain 6 deletion induces adipose browning and prevents obesity and type 2 diabetes and is published by Zhao et al.
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Glires: NE > Rodentia: NE > Myomorpha: NE > Muroidea: NE > Muridae: NE > Murinae: NE > Mus [genus]: NE > Mus [subgenus]: NE > Mus musculus: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MDLDVVNMFVIAGGTLAIPILAFVASFLLWPSALIRIYYWYWRRTLGMQV RYAHHEDYQFCYSFRGRPGHKPSILMLHGFSAHKGMWLSVVKFLPKNLHL VCVDMPGHEGTTRSSLDDLSIVGQVKRIHQFVECLKLNKKPFHLIGTSMG GHVAGVYAAYYPSDVCSLSLVCAAGLQYSTDNPFVQRLKELEESAAIQKI PLIPSTPEEMSEMLQLCSYVRFKVPQQILQGLVDVRIPHNSFYRKLFLEI VNEKSRYSLHENMDKIKVPTQIIWGKQDQVLDVSGADILAKSISNSQVEV LENCGHSVVMERPRKTAKLIVDFLASVHNTDNKKLN
References
12 moreTitle: The serine hydrolase ABHD6 controls survival and thermally induced seizures in a mouse model of Dravet syndrome Westenbroek R, Kaplan J, Viray K, Stella N Ref: Neurobiol Dis, 180:106099, 2023 : PubMed
Evidence suggests that inhibition of alpha/beta hydrolase-domain containing 6 (ABHD6) reduces seizures; however, the molecular mechanism of this therapeutic response remains unknown. We discovered that heterozygous expression of Abhd6 (Abhd6(+/-)) significantly reduced the premature lethality of Scn1a(+/-) mouse pups, a genetic mouse model of Dravet Syndrome (DS). Both Abhd6(+/-) mutation and pharmacological inhibition of ABHD6 reduced the duration and incidence of thermally induced seizures in Scn1a(+/-) pups. Mechanistically, the in vivo anti-seizure response resulting from ABHD6 inhibition is mediated by potentiation of gamma-aminobutyric acid receptors Type-A (GABA(A)R). Brain slice electrophysiology showed that blocking ABHD6 potentiates extrasynaptic (tonic) GABA(A)R currents that reduce dentate granule cell excitatory output without affecting synaptic (phasic) GABA(A)R currents. Our results unravel an unexpected mechanistic link between ABHD6 activity and extrasynaptic GABA(A)R currents that controls hippocampal hyperexcitability in a genetic mouse model of DS. BRIEF SUMMARY: This study provides the first evidence for a mechanistic link between ABHD6 activity and the control of extrasynaptic GABA(A)R currents that controls hippocampal hyperexcitability in a genetic mouse model of Dravet Syndrome and can be targeted to dampened seizures.
        
Title: Termination of acute stress response by the endocannabinoid system is regulated through LSD1-mediated transcriptional repression of 2-AG hydrolases ABHD6 and MAGL Longaretti A, Forastieri C, Gabaglio M, Rubino T, Battaglioli E, Rusconi F Ref: Journal of Neurochemistry, :e15000, 2020 : PubMed
Acute environmental stress rarely implies long lasting neurophysiological and behavioral alterations. On the contrary, chronic stress exerts a potent toxic effect at the glutamatergic synapse whose altered physiology has been recognized as a core trait of neuropsychiatric disorders. The endocannabinoid system (ECS) plays an important role in the homeostatic response to acute stress. In particular, stress induces synthesis of endocannabinoid (eCB) 2-arachidonyl glycerol (2-AG). 2-AG stimulates presynaptic cannabinoid 1 (CB1) receptor contributing to stress response termination through inhibition of glutamate release, restraining thereafter anxiety arousal. We employ mouse models of stress response coupled to gene expression analyses, unravelling that in response to acute psychosocial stress in the mouse hippocampus, ECS-mediated synaptic modulation is enhanced via transcriptional repression of two enzymes involved in 2-AG degradation: alpha/beta-Hydrolase Domain containing 6 (ABHD6) and Monoacylglycerol Lipase (MAGL). Such a process is orchestrated by the epigenetic corepressor LSD1 who directly interacts with promoter regulatory regions of Abhd6 and Magl. Remarkably, negative transcriptional control of Abhd6 and Magl is lost in the hippocampus upon chronic psychosocial stress, possibly contributing to trauma-induced drift of synapse physiology toward uncontrolled glutamate transmission. We previously showed that in mice Lysine Specific Demethylase 1 (LSD1) increases its hippocampal expression in response to psychosocial stress preventing excessive consolidation of anxiety-related plasticity. With this work we unravel a nodal epigenetic modulation of eCB turn over, shedding new light on the molecular substrate of converging stress-terminating effects displayed by ECS and LSD1.
The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.
        
12 lessTitle: The serine hydrolase ABHD6 controls survival and thermally induced seizures in a mouse model of Dravet syndrome Westenbroek R, Kaplan J, Viray K, Stella N Ref: Neurobiol Dis, 180:106099, 2023 : PubMed
Evidence suggests that inhibition of alpha/beta hydrolase-domain containing 6 (ABHD6) reduces seizures; however, the molecular mechanism of this therapeutic response remains unknown. We discovered that heterozygous expression of Abhd6 (Abhd6(+/-)) significantly reduced the premature lethality of Scn1a(+/-) mouse pups, a genetic mouse model of Dravet Syndrome (DS). Both Abhd6(+/-) mutation and pharmacological inhibition of ABHD6 reduced the duration and incidence of thermally induced seizures in Scn1a(+/-) pups. Mechanistically, the in vivo anti-seizure response resulting from ABHD6 inhibition is mediated by potentiation of gamma-aminobutyric acid receptors Type-A (GABA(A)R). Brain slice electrophysiology showed that blocking ABHD6 potentiates extrasynaptic (tonic) GABA(A)R currents that reduce dentate granule cell excitatory output without affecting synaptic (phasic) GABA(A)R currents. Our results unravel an unexpected mechanistic link between ABHD6 activity and extrasynaptic GABA(A)R currents that controls hippocampal hyperexcitability in a genetic mouse model of DS. BRIEF SUMMARY: This study provides the first evidence for a mechanistic link between ABHD6 activity and the control of extrasynaptic GABA(A)R currents that controls hippocampal hyperexcitability in a genetic mouse model of Dravet Syndrome and can be targeted to dampened seizures.
        
Title: ABHD6 Controls Amphetamine-Stimulated Hyperlocomotion: Involvement of CB(1) Receptors Deng L, Viray K, Singh S, Cravatt B, Stella N Ref: Cannabis Cannabinoid Res, :, 2021 : PubMed
Introduction: Activation of cannabinoid 1 receptors (CB(1)Rs) by endocannabinoids (eCBs) is controlled by both eCB production and eCB inactivation. Accordingly, inhibition of eCB hydrolyzing enzymes, monoacylglycerol lipase (MAGL) and alpha/beta-hydrolase domain containing 6 (ABHD6), enhances eCB accumulation and CB(1)R activation. It is known that inhibition of MAGL regulates select CB(1)R-dependent behaviors in mice, including locomotor behaviors and their modulation by psychostimulants, but much less is known about the effect of inhibiting ABHD6 activity on such behaviors. Methods: We report a new mouse line that carries a genetic deletion of Abhd6 and evaluated its effect on spontaneous locomotion measured in a home cage monitoring system, motor coordination measured on a Rotarod, and amphetamine-stimulated hyperlocomotion and amphetamine sensitization (AS) measured in an open-field chamber. Results: ABHD6 knockout (KO) mice reached adulthood without exhibiting overt behavioral impairment, and we measured only mild reduction in spontaneous locomotion and motor coordination in adult ABHD6 KO mice compared to wild-type (WT) mice. Significantly, amphetamine-stimulated hyperlocomotion was enhanced by twofold in ABHD6 KO mice compared to WT mice and yet ABHD6 KO mice expressed AS to the same extent as WT mice. A twofold increase in amphetamine-stimulated hyperlocomotion was also measured in ABHD6 heterozygote mice and in WT mice treated with the ABHD6 inhibitor KT-182. It is known that amphetamine-stimulated hyperlocomotion is not affected by the CB(1)R antagonist, SR141617, and we discovered that the enhanced amphetamine-stimulated hyperlocomotion resulting from ABHD6 inhibition is blocked by SR141617. Conclusions: Our study suggests that ABHD6 controls amphetamine-stimulated hyperlocomotion by a mechanistic switch to a CB(1)R-dependent mechanism.
The endocannabinoid system has been shown to be a putative therapeutic target for retinal disease. Here, we aimed to investigate the ability of the endocannabinoid 2-arachidonoylglycerol (2-AG) and novel inhibitors of its metabolic enzymes, alpha/beta-hydrolase domain-containing 6 (ABHD6) and monoacylglycerol lipase (MAGL), a) to protect the retina against excitotoxicity and b) the mechanisms involved in the neuroprotection. Sprague-Dawley rats, wild type and Akt2(-/-) C57BL/6 mice were intravitreally administered with phosphate-buffered saline or (RS)-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hydrobromide (AMPA). 2-AG was intravitreally co-administered with AMPA in the absence and presence of AM251 or AM630 (cannabinoid 1 and 2 receptor antagonists, respectively) or Wortmannin [Phosphoinositide 3-Kinase (PI3K)/Akt inhibitor]. Inhibitors of ABHD6 and dual ABHD6/MAGL (AM12100 and AM11920, respectively) were co-administered with AMPA intravitreally in rats. Immunohistochemistry was performed using antibodies raised against retinal neuronal markers (bNOS), microglia (Iba1) and macroglia (GFAP). TUNEL assay and real-time PCR were also employed. The CB2 receptor was expressed in rat retina (approx. 62% of CB1 expression). 2-AG attenuated the AMPA-induced increase in TUNEL(+) cells. 2-AG activation of both CB1 and CB2 receptors and the PI3K/Akt downstream signaling pathway, as substantiated by the use of Akt2(-/-) mice, afforded neuroprotection against AMPA excitotoxicity. AM12100 and AM11920 attenuated the AMPA-induced glia activation and produced a dose-dependent partial neuroprotection, with the dual inhibitor AM11920 being more efficacious. These results show that 2-AG has the pharmacological profile of a putative therapeutic for retinal diseases characterized by neurodegeneration and neuroinflammation, when administered exogenously or by the inhibition of its metabolic enzymes.
Fine-tuning than complete disruption of 2-arachidonoylglycerol (2-AG) metabolism in the brain represents a promising pharmacological approach to limit potential untoward effects associated with complete blockade of monoacylglycerol lipase (MGL), the primary hydrolase of 2-AG. This could be achieved through a/b-hydrolase domain containing 6 (ABHD6) inhibition, which will provide a smaller and safer contribution to 2-AG regulation in the brain. Pharmacological studies with ABHD6 inhibitors have recently been reported, where modulation of ABHD6 activity either through CB1R-dependent or CB1R-independent processes showed promise in preclinical models of epilepsy, neuropathic pain and inflammation. Furthermore in the periphery, ABHD6 modulates 2-AG and other fatty acid monoacylglycerols (MAGs) and is implicated in Type-2 diabetes, metabolic syndrome and potentially other diseases. Herein, we report the discovery of single-digit nanomolar potent and highly specific ABHD6 inhibitors with >1000-fold selectivity against MGL and FAAH. The new ABHD6 inhibitors provide early leads to develop therapeutics for neuroprotection and the treatment of inflammation and diabetes.
        
Title: Therapeutic potential of targeting alpha/beta-Hydrolase domain-containing 6 (ABHD6) Deng H, Li W Ref: Eur Journal of Medicinal Chemistry, 198:112353, 2020 : PubMed
alpha/beta-Hydrolase domain 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes monoacylglycerol (MAG) lipids, particularly the endogenous cannabinoid 2-arachidonoylglycerol (2-AG), in both central and peripheral tissues. ABHD6 and its substrates have been shown to be involved in the modulation of various (patho)physiological processes, including neurotransmission, inflammation, insulin secretion, adipose browning, food intake, autoimmune disorders, as well as neurological and metabolic diseases, making this enzyme a promising therapeutic target to treat several diseases. This review will focus on the molecular mechanism, biological functions and pathological roles of ABHD6, as well as recent efforts to develop ABHD6 inhibitors, providing a strong basis for the development of small molecules by targeting ABHD6 to treat diverse diseases.
        
Title: Termination of acute stress response by the endocannabinoid system is regulated through LSD1-mediated transcriptional repression of 2-AG hydrolases ABHD6 and MAGL Longaretti A, Forastieri C, Gabaglio M, Rubino T, Battaglioli E, Rusconi F Ref: Journal of Neurochemistry, :e15000, 2020 : PubMed
Acute environmental stress rarely implies long lasting neurophysiological and behavioral alterations. On the contrary, chronic stress exerts a potent toxic effect at the glutamatergic synapse whose altered physiology has been recognized as a core trait of neuropsychiatric disorders. The endocannabinoid system (ECS) plays an important role in the homeostatic response to acute stress. In particular, stress induces synthesis of endocannabinoid (eCB) 2-arachidonyl glycerol (2-AG). 2-AG stimulates presynaptic cannabinoid 1 (CB1) receptor contributing to stress response termination through inhibition of glutamate release, restraining thereafter anxiety arousal. We employ mouse models of stress response coupled to gene expression analyses, unravelling that in response to acute psychosocial stress in the mouse hippocampus, ECS-mediated synaptic modulation is enhanced via transcriptional repression of two enzymes involved in 2-AG degradation: alpha/beta-Hydrolase Domain containing 6 (ABHD6) and Monoacylglycerol Lipase (MAGL). Such a process is orchestrated by the epigenetic corepressor LSD1 who directly interacts with promoter regulatory regions of Abhd6 and Magl. Remarkably, negative transcriptional control of Abhd6 and Magl is lost in the hippocampus upon chronic psychosocial stress, possibly contributing to trauma-induced drift of synapse physiology toward uncontrolled glutamate transmission. We previously showed that in mice Lysine Specific Demethylase 1 (LSD1) increases its hippocampal expression in response to psychosocial stress preventing excessive consolidation of anxiety-related plasticity. With this work we unravel a nodal epigenetic modulation of eCB turn over, shedding new light on the molecular substrate of converging stress-terminating effects displayed by ECS and LSD1.
        
Title: Impact of tetrahydrocannabinol on the endocannabinoid 2-arachidonoylglycerol metabolism: ABHD6 and ABHD12 as novel players in human placenta Maia J, Fonseca BM, Cunha SC, Braga J, Goncalves D, Teixeira N, Correia-da-Silva G Ref: Biochimica & Biophysica Acta Molecular & Cellular Biology Lipids, :158807, 2020 : PubMed
Cannabis use has been increasing worldwide for recreational and medical purposes. Consumption by pregnant women is associated with disturbances in pregnancy outcome, such as low birth weight, prematurity and intrauterine growth retardation, though the underlying biochemical mechanisms are unknown. The endocannabinoid system is involved in several reproductive events and the disruption of its homeostasis by delta(9)-tetrahydrocannabinol (THC), the main psychoactive cannabinoid, may lead to a negative gestational outcome. In human placenta, THC impairs the levels of the endocannabinoid anandamide (AEA). The other major endocannabinoid, 2-arachidonoylglycerol (2-AG) also plays an important role on proper placentation and pregnancy success. However, THC impact on 2-AG homeostasis has never been addressed. Hence, the effects of THC in 2-AG levels and metabolic enzymes expression were explored. Long-term treatment impairs the expression of the main 2-AG synthetic and degradative enzymes. Curiously, with the highest concentration, despite the maintenance of diacylglycerol lipase alpha (DAGLalpha) and the decrease in monoacylglycerol lipase (MAGL) expression, 2-AG levels remain constant. Given the endocannabinoid signalling local tight regulation, we hypothesize the involvement of other 2-AG degradative enzymes. Indeed, THC increases the expression of the hydrolyzing enzymes alpha beta hydrolase domain -6 (ABHD6) and -12 (ABHD12), that we firstly describe in human placental tissues. The results show that THC, depending on time of exposure, induces alterations in 2-AG metabolic enzymes expression in placental explants, highlighting the importance of 2-AG regulation and endocannabinoid signaling in placental development. Alterations in this homeostasis may explain the negative pregnancy outcome related to cannabis consumption.
        
Title: ABHD6: Its Place in Endocannabinoid Signaling and Beyond Cao JK, Kaplan J, Stella N Ref: Trends in Pharmacological Sciences, 40:267, 2019 : PubMed
The endocannabinoid (eCB) signaling system modulates neurotransmission and inflammation, among other physiological functions. Its newest member, alpha/beta-hydrolase domain-containing 6 (ABHD6), has emerged as a promising therapeutic target to treat several devastating diseases, including epilepsy. Here, we review the molecular mechanisms that mediate and control eCB signaling and, within it, the specific role of ABHD6. We also discuss how ABHD6 controls the abundance of additional lipids and the trafficking of ionotropic receptors to plasma membranes. We finish with several unexplored questions regarding this novel enzyme. Our current understanding of the molecular mechanism and biological function of ABHD6 provides a strong foundation for the development of small-molecule therapeutics to treat devastating diseases.
alpha/beta-Hydrolase domain 6 (ABHD6) is a monoacylglycerol hydrolase that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG). Although complete or peripheral ABHD6 loss of function is protective against diet-induced obesity and insulin resistance, the role of ABHD6 in the central control of energy balance is unknown. Using a viral-mediated knockout approach, targeted endocannabinoid measures, and pharmacology, we discovered that mice lacking ABHD6 from neurons of the ventromedial hypothalamus (VMHKO) have higher VMH 2-AG levels in conditions of endocannabinoid recruitment and fail to physiologically adapt to key metabolic challenges. VMHKO mice exhibited blunted fasting-induced feeding and reduced food intake, energy expenditure, and adaptive thermogenesis in response to cold exposure, high-fat feeding, and dieting (transition to a low-fat diet). Our findings identify ABHD6 as a regulator of the counter-regulatory responses to major metabolic shifts, including fasting, nutrient excess, cold, and dieting, thereby highlighting the importance of ABHD6 in the VMH in mediating energy metabolism flexibility.
Suppression of alpha/beta-domain hydrolase-6 (ABHD6), a monoacylglycerol (MAG) hydrolase, promotes glucose-stimulated insulin secretion by pancreatic beta cells. We report here that high-fat-diet-fed ABHD6-KO mice show modestly reduced food intake, decreased body weight gain and glycemia, improved glucose tolerance and insulin sensitivity, and enhanced locomotor activity. ABHD6-KO mice also show increased energy expenditure, cold-induced thermogenesis, brown adipose UCP1 expression, fatty acid oxidation, and white adipose browning. Adipose browning and cold-induced thermogenesis are replicated by the ABHD6 inhibitor WWL70 and by antisense oligonucleotides targeting ABHD6. Our evidence suggests that one mechanism by which the lipolysis derived 1-MAG signals intrinsic and cell-autonomous adipose browning is via PPARalpha and PPARgamma activation, and that ABHD6 regulates adipose browning by controlling signal competent 1-MAG levels. Thus, ABHD6 regulates energy homeostasis, brown adipose function, and white adipose browning and is a potential therapeutic target for obesity and type 2 diabetes.
Monoacylglycerol lipase (MAGL) represents a primary degradation enzyme of the endogenous cannabinoid (eCB), 2-arachidonoyglycerol (2-AG). This study reports a potent covalent MAGL inhibitor, SAR127303. The compound behaves as a selective and competitive inhibitor of mouse and human MAGL, which potently elevates hippocampal levels of 2-AG in mice. In vivo, SAR127303 produces antinociceptive effects in assays of inflammatory and visceral pain. In addition, the drug alters learning performance in several assays related to episodic, working and spatial memory. Moreover, long term potentiation (LTP) of CA1 synaptic transmission and acetylcholine release in the hippocampus, two hallmarks of memory function, are both decreased by SAR127303. Although inactive in acute seizure tests, repeated administration of SAR127303 delays the acquisition and decreases kindled seizures in mice, indicating that the drug slows down epileptogenesis, a finding deserving further investigation to evaluate the potential of MAGL inhibitors as antiepileptics. However, the observation that 2-AG hydrolysis blockade alters learning and memory performance, suggests that such drugs may have limited value as therapeutic agents.
OBJECTIVE: alpha/beta-Hydrolase domain-6 (ABHD6) is a newly identified monoacylglycerol (MAG) lipase. We recently reported that it negatively regulates glucose stimulated insulin secretion (GSIS) in the beta cells by hydrolyzing lipolysis-derived MAG that acts as a metabolic coupling factor and signaling molecule via exocytotic regulator Munc13-1. Whether ABHD6 and MAG play a role in response to all classes of insulin secretagogues, in particular various fuel and non-fuel stimuli, is unknown. METHODS: Insulin secretion in response to various classes of secretagogues, exogenous MAG and pharmacological agents was measured in islets of mice deficient in ABHD6 specifically in the beta cell (BKO). Islet perifusion experiments and determinations of glucose and fatty acid metabolism, cytosolic Ca(2+) and MAG species levels were carried out. RESULTS: Deletion of ABHD6 potentiated insulin secretion in response to the fuels glutamine plus leucine and alpha-ketoisocaproate and to the non-fuel stimuli glucagon-like peptide 1, carbamylcholine and elevated KCl. Fatty acids amplified GSIS in control and BKO mice to the same extent. Exogenous 1-MAG amplified insulin secretion in response to fuel and non-fuel stimuli. MAG hydrolysis activity was greatly reduced in BKO islets without changes in total diacylglycerol and triacylglycerol lipase activity. ABHD6 deletion induced insulin secretion independently from KATP channels and did not alter the glucose induced rise in intracellular Ca(2+). Perifusion studies showed elevated insulin secretion during second phase of GSIS in BKO islets that was not due to altered cytosolic Ca(2+) signaling or because of changes in glucose and fatty acid metabolism. Glucose increased islet saturated long chain 1-MAG species and ABHD6 deletion caused accumulation of these 1-MAG species at both low and elevated glucose. CONCLUSION: ABHD6 regulates insulin secretion in response to fuel stimuli at large and some non-fuel stimuli by controlling long chain saturated 1-MAG levels that synergize with other signaling pathways for secretion.
The serine hydrolase alpha/beta-hydrolase domain 6 (ABHD6) hydrolyzes the most abundant endocannabinoid (eCB) in the brain, 2-arachidonoylglycerol (2-AG), and controls its availability at cannabinoid receptors. We show that ABHD6 inhibition decreases pentylenetetrazole (PTZ)-induced generalized tonic-clonic and myoclonic seizure incidence and severity. This effect is retained in Cnr1(-/-) or Cnr2(-/-) mice, but blocked by addition of a subconvulsive dose of picrotoxin, suggesting the involvement of GABAA receptors. ABHD6 inhibition also blocked spontaneous seizures in R6/2 mice, a genetic model of juvenile Huntington's disease known to exhibit dysregulated eCB signaling. ABHD6 blockade retained its antiepileptic activity over chronic dosing and was not associated with psychomotor or cognitive effects. While the etiology of seizures in R6/2 mice remains unsolved, involvement of the hippocampus is suggested by interictal epileptic discharges, increased expression of vGLUT1 but not vGAT, and reduced Neuropeptide Y (NPY) expression. We conclude that ABHD6 inhibition may represent a novel antiepileptic strategy.
        
Title: Highly predictive ligand-based pharmacophore and homology models of ABHD6 Bowman AL, Makriyannis A Ref: Chemical Biology Drug Des, 81:382, 2013 : PubMed
alpha/beta-Hydrolase domain-containing 6 (ABHD6) represents a potentially attractive therapeutic target for indirectly potentiating 2-arachidonoylglycerol signaling; however, the enzyme is currently largely uncharacterized. Here, we describe a five element, ligand-based pharmacophore model along with a refined homology model of ABHD6. Following a virtual screen of a modest database, both the pharmacophore and homology models were found to be highly predictive, preferentially identifying ABHD6 inhibitors over drug-like non-inhibitors. The models yield insight into the features required for optimal ligand binding to ABHD6 and the atomic structure of the binding site. In combination, the two models should be very helpful not only in high-throughput virtual screening, but also in lead optimization, and will facilitate the development of novel, selective ABHD6 inhibitors as potential drugs.
The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.