(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Glires: NE > Rodentia: NE > Myomorpha: NE > Muroidea: NE > Muridae: NE > Murinae: NE > Mus [genus]: NE > Mus [subgenus]: NE > Mus musculus: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MMASSCSRRLLAAALLPWCCAAWALGHLDPPSPPPLVIWHGMGDSCCNPM SMGVIKKMVEKEIPGIYVLSLEIGKNMMEDVENSFFLNVNVQVNMVCQIL EKDPKLQQGYNAIGFSQGGQFLRAVAQRCPTPPMMTLISVGGQHQGVFGL PRCPGESSHICDFIRKSLNAGAYSKLVQERLVQAQYWHDPIKESVYRNYS IFLADINQERCVNESYKKNLMALKKFVMVKFFNDSIVDPVDSEWFGFYRS GQAKETIPLQESTLYTEDRLGLKKMDKAGKLVFLAKEGDHLQISKEWFTA HIIPFLK
Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of children, characterized by selective death of neocortical neurons. To understand early disease mechanisms in INCL, we have studied Ppt1(Deltaex4) knock-out mouse neurons in culture and acute brain slices. Global transcript profiling showed deregulation of key neuronal functions in knock-out mice including cholesterol metabolism, neuronal maturation, and calcium homeostasis. Cholesterol metabolism showed major changes; sterol biosynthesis was enhanced and steady-state amounts of sterols were altered at the cellular level. Changes were also present in early maturation of Ppt1(Deltaex4) neurons indicated by increased proliferative capacity of neuronal stem cells. Knock-out neurons presented unaltered electrophysiological properties suggesting uncompromised synaptic function in young animals. However, knock-out neurons exhibited more efficient recovery from glutamate-induced calcium transients, possibly indicating neuroprotective activation. This study established that the neuronal deregulation in INCL is linked to neuronal maturation, lipid metabolism and calcium homeostasis.
The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.
Palmitoyl protein thioesterase (PPT) is the defective enzyme in infantile neuronal ceroid lipofuscinosis (INCL), which is a recessively inherited, progressive neurodegenerative disorder. We present here the cloning, chromosomal mapping, genomic structure, and the expression of the cDNA of mouse PPT. The mouse PPT gene spans >21 kb of genomic DNA and contains nine exons with a coding sequence of 918 bp. Fluorescence in situ hybridization to metaphase chromosomes localized the mouse PPT gene to the chromosome 4 conserved syntenic region with human chromosome 1p32 where the human PPT is located. PPT is expressed widely in a variety of mouse tissues. The mouse PPT cDNA is conserved highly with the human and rat PPT both at the nucleotide and amino acid sequence level. Transient expression of mouse PPT in COS-1 cells yielded a 38/36-kD differentially glycosylated polypeptide that was also secreted into culture media. Immunofluorescence analysis of transiently transfected HeLa cells indicated lysosomal localization of mouse PPT. Based on the high conservation of the gene and polypeptide structure as well as similar processing and intracellular localization, the function of PPT in mouse and human are likely to be very similar.
        
38 lessTitle: Fingolimod and Teriflunomide Attenuate Neurodegeneration in Mouse Models of Neuronal Ceroid Lipofuscinosis Groh J, Berve K, Martini R Ref: Mol Ther, 25:1889, 2017 : PubMed
CLN diseases are rare lysosomal storage diseases characterized by progressive axonal degeneration and neuron loss in the CNS, manifesting in disability, blindness, and premature death. We have previously demonstrated that, in animal models of infantile and juvenile forms of CLN disease (CLN1 and CLN3, respectively), secondary neuroinflammation in the CNS substantially amplifies neural damage, opening the possibility that immunomodulatory treatment might improve disease outcome. First, we recapitulated the inflammatory phenotype, originally seen in mice in autopsies of CLN patients. We then treated mouse models of CLN1 and CLN3 disease with the clinically approved immunomodulatory compounds fingolimod (0.5 mg/kg/day) and teriflunomide (10 mg/kg/day) by consistent supply in the drinking water for 5 months. The treatment was well tolerated and reduced T cell numbers and microgliosis in the CNS of both models. Moreover, axonal damage, neuron loss, retinal thinning, and brain atrophy were substantially attenuated in both models, along with reduced frequency of myoclonic jerks in Ppt1-/- mice. Based on these findings, and because side effects were not detected, we suggest that clinically approved immune modulators such as fingolimod and teriflunomide may be suitable to attenuate progression of CLN1 and CLN3 disease and, possibly, other orphan diseases with pathogenically relevant neuroinflammation.
Infantile neuronal ceroid lipofuscinosis (INCL, or CLN1 disease) is an inherited neurodegenerative storage disorder caused by a deficiency of the lysosomal enzyme palmitoyl protein thioesterase 1 (PPT1). It was widely believed that the pathology associated with INCL was limited to the brain, but we have now found unexpectedly profound pathology in the human INCL spinal cord. Similar pathological changes also occur at every level of the spinal cord of PPT1-deficient (Ppt1-/- ) mice before the onset of neuropathology in the brain. Various forebrain-directed gene therapy approaches have only had limited success in Ppt1-/- mice. Targeting the spinal cord via intrathecal administration of an adeno-associated virus (AAV) gene transfer vector significantly prevented pathology and produced significant improvements in life span and motor function in Ppt1-/- mice. Surprisingly, forebrain-directed gene therapy resulted in essentially no PPT1 activity in the spinal cord, and vice versa. This leads to a reciprocal pattern of histological correction in the respective tissues when comparing intracranial with intrathecal injections. However, the characteristic pathological features of INCL were almost completely absent in both the brain and spinal cord when intracranial and intrathecal injections of the same AAV vector were combined. Targeting both the brain and spinal cord also produced dramatic and synergistic improvements in motor function with an unprecedented increase in life span. These data show that spinal cord pathology significantly contributes to the clinical progression of INCL and can be effectively targeted therapeutically. This has important implications for the delivery of therapies in INCL, and potentially in other similar disorders.
CLN diseases are mostly fatal lysosomal storage diseases that lead to neurodegeneration in the CNS. We have previously shown that CD8+ T-lymphocytes contribute to axonal perturbation and neuron loss in the CNS of Ppt1(-/-) mice, a model of CLN1 disease. We now investigated the role of the inflammation-related cell adhesion molecule sialoadhesin (Sn) in Ppt1(-/-) and Cln3(-/-) mice, a model of the most frequent form, CLN3 disease. Microglia/macrophages in the CNS of both models showed an upregulation of Sn and markers for proinflammatory M1 polarization and antigen presentation. Sn+ microglia/macrophages associated with SMI32+ axonal spheroids and CD8+ T-lymphocytes. To analyze their pathogenic impact, we crossbred both models with Sn-deficient mice and scored axonal degeneration and neuronal integrity using immunohistochemistry, electron microscopy and optical coherence tomography. Degenerative alterations in the retinotectal pathway of Ppt1(-/-)Sn(-/-) and Cln3(-/-)Sn(-/-) mice were significantly reduced. Ppt1(-/-)Sn(-/-) mice also showed a substantially improved clinical phenotype and extended lifespan, attenuated numbers of M1-polarized microglia/macrophages and reduced expression levels of proinflammatory cytokines. This was accompanied by an increased frequency of CD8+CD122+ T-lymphocytes in the CNS of Ppt1(-/-)Sn(-/-) mice, the regulatory phenotype of which was demonstrated by impaired survival of CD8+CD122- effector T-lymphocytes in co-culture experiments. We show for the first time that increased Sn expression on microglia/macrophages contributes to neural perturbation in two distinct models of CLN disease. Our data also indicate that a rarely described CD8+CD122+ T-cell population can regulate the corresponding diseases. These studies provide insights into CLN pathogenesis and may guide in designing immuno-regulatory treatment strategies.
        
Title: Tissue-specific variation in nonsense mutant transcript level and drug-induced read-through efficiency in the Cln1(R151X) mouse model of INCL Thada V, Miller JN, Kovacs AD, Pearce DA Ref: J Cell Mol Med, 20:381, 2016 : PubMed
About 10% of inherited diseases are caused by nonsense mutations [Trends Mol Med 18 (2012) 688], and nonsense suppression drug therapy promoting translation through premature stop codons is an emerging therapeutic approach. Infantile neuronal ceroid lipofuscinosis (INCL), a childhood neurodegenerative disease, results from mutations in the CLN1 gene encoding the lysosomal enzyme, palmitoyl-protein thioesterase 1 (PPT1) [Biochim Biophys Acta 1832 (2013) 1806, Hum Mutat (2012) 63, Biochim Biophys Acta 1832 (2013) 1881]. The nonsense mutation p.R151X is the most common disease-causing CLN1 mutation Hum Mutat (2012) 63. In the novel Cln1(R151X) mouse model of INCL, we found large, tissue-specific variations in Cln1(R151X) mRNA level and PPT1 residual enzyme activity. These tissue-specific differences strongly influenced the read-through efficiency of ataluren (PTC124), a well-known nonsense suppression drug. A two-day treatment with ataluren (10 mg/kg) increased PPT1 enzyme activity in the liver and muscle, but not in any other tissue examined. Our study identifies a new challenge/hurdle for read-through drug therapy: variable efficiency of read-through therapy in the different tissues/organs because of tissue-specific variations in nonsense mutant transcript levels.
Neurodegeneration is a devastating manifestation in the majority of >50 lysosomal storage disorders (LSDs). Neuronal ceroid lipofuscinoses (NCLs) are the most common childhood neurodegenerative LSDs. Mutations in 13 different genes (called CLNs) underlie various types of NCLs, of which the infantile NCL (INCL) and congenital NCL (CNCL) are the most lethal. Although inactivating mutations in the CLN1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) cause INCL, those in the CLN10 gene encoding cathepsin D (CD) underlie CNCL. PPT1 is a lysosomal thioesterase that cleaves the thioester linkage in S-acylated proteins required for their degradation by lysosomal hydrolases like CD. Thus, PPT1 deficiency causes lysosomal accumulation of these lipidated proteins (major constituents of ceroid) leading to INCL. We sought to determine whether there is a common pathogenic link between INCL and CNCL. Using biochemical, histological and confocal microscopic analyses of brain tissues and cells from Cln1(-/-) mice that mimic INCL, we uncovered that Cln10/CD is overexpressed. Although synthesized in the endoplasmic reticulum, the CD-precursor protein (pro-CD) is transported through endosome to the lysosome where it is proteolytically processed to enzymatically active-CD. We found that despite Cln10 overexpression, the maturation of pro-CD to enzymatically active-CD in lysosome was disrupted. This defect impaired lysosomal degradative function causing accumulation of undegraded cargo in lysosome leading to INCL. Notably, treatment of intact Cln1(-/-) mice as well as cultured brain cells derived from these animals with a thioesterase-mimetic small molecule, N-tert-butyl-hydroxylamine, ameliorated the CD-processing defect. Our findings are significant in that they define a pathway in which Cln1 mutations disrupt the maturation of a major degradative enzyme in lysosome contributing to neuropathology in INCL and suggest that lysosomal CD deficiency is a common pathogenic link between INCL and CNCL.
Infantile neuronal ceroid lipofuscinosis (INCL, Infantile Batten disease) is a neurodegenerative lysosomal storage disease caused by a deficiency in palmitoyl protein thioesterase-1 (PPT1). The PPT1-deficient mouse (Cln1(-/-)) is a useful phenocopy of human INCL. Cln1(-/-) mice display retinal dysfunction, seizures, motor deficits, and die at ~8 months of age. However, little is known about the cognitive and behavioral functions of Cln1(-/-) mice during disease progression. In the present study, younger (~1-2 months of age) Cln1(-/-) mice showed minor deficits in motor/sensorimotor functions while older (~5-6 months of age) Cln1(-/-) mice exhibited more severe impairments, including decreased locomotor activity, inferior cued water maze performance, decreased running wheel ability, and altered auditory cue conditioning. Unexpectedly, certain cognitive functions such as some learning and memory capabilities seemed intact in older Cln1(-/-) mice. Younger and older Cln1(-/-) mice presented with walking initiation defects, gait abnormalities, and slowed movements, which are analogous to some symptoms reported in INCL and parkinsonism. However, there was no evidence of alterations in dopaminergic markers in Cln1(-/-) mice. Results from this study demonstrate quantifiable changes in behavioral functions during progression of murine INCL and suggest that Parkinson-like motor/sensorimotor deficits in Cln1(-/-) mice are not mediated by dopamine deficiency.
        
Title: Intrathecal enzyme replacement therapy improves motor function and survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis Lu JY, Nelvagal HR, Wang L, Birnbaum SG, Cooper JD, Hofmann SL Ref: Mol Genet Metab, 116:98, 2015 : PubMed
The neuronal ceroid lipofuscinoses (NCLs) are a group of related hereditary lysosomal storage disorders characterized by progressive loss of neurons in the central nervous system resulting in dementia, loss of motor skills, seizures and blindness. A characteristic intralysosomal accumulation of autofluorescent storage material occurs in the brain and other tissues. Three major forms and nearly a dozen minor forms of NCL are recognized. Infantile-onset NCL (CLN1 disease) is caused by severe deficiency in a soluble lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1) and no therapy beyond supportive care is available. Homozygous Ppt1 knockout mice reproduce the known features of the disease, developing signs of motor dysfunction at 5 months of age and death around 8 months. Direct delivery of lysosomal enzymes to the cerebrospinal fluid is an approach that has gained traction in small and large animal models of several other neuropathic lysosomal storage diseases, and has advanced to clinical trials. In the current study, Ppt1 knockout mice were treated with purified recombinant human PPT1 enzyme delivered to the lumbar intrathecal space on each of three consecutive days at 6 weeks of age. Untreated PPT1 knockout mice and wild-type mice served as additional controls. Four enzyme concentration levels (0, 2.6, 5.3 and 10.6 mg/ml of specific activity 20 U/mg) were administered in a volume of 80 mul infused over 8 min. Each group consisted of 16-20 mice. The treatment was well tolerated. Disease-specific survival was 233, 267, 272, and 284days for each of the four treatment groups, respectively, and the effect of treatment was highly significant (p<0.0001). The timing of motor deterioration was also delayed. Neuropathology was improved as evidenced by decreased autofluorescent storage material in the spinal cord and a decrease in CD68 staining in the cortex and spinal cord. The improvements in motor function and survival are similar to results reported for preclinical studies involving other lysosomal storage disorders, such as CLN2/TPP1 deficiency, for which intraventricular ERT is being offered in clinical trials. If ERT delivery to the CSF proves to be efficacious in these disorders, PPT1 deficiency may also be amenable to this approach.
OBJECTIVE: Nonsense mutations account for 5-70% of all genetic disorders. In the United States, nonsense mutations in the CLN1/PPT1 gene underlie >40% of the patients with infantile neuronal ceroid lipofuscinosis (INCL), a devastating neurodegenerative lysosomal storage disease. We sought to generate a reliable mouse model of INCL carrying the most common Ppt1 nonsense mutation (c.451C>T) found in the United States patient population to provide a platform for evaluating nonsense suppressors in vivo. METHODS: We knocked-in c.451C>T nonsense mutation in the Ppt1 gene in C57 embryonic stem (ES) cells using a targeting vector in which LoxP flanked the Neo cassette, which was removed from targeted ES cells by electroporating Cre. Two independently targeted ES clones were injected into blastocysts to generate syngenic C57 knock-in mice, obviating the necessity for extensive backcrossing. RESULTS: Generation of Ppt1-KI mice was confirmed by DNA sequencing, which showed the presence of c.451C>T mutation in the Ppt1 gene. These mice are viable and fertile, although they developed spasticity (a "clasping" phenotype) at a median age of 6 months. Autofluorescent storage materials accumulated throughout the brain regions and in visceral organs. Electron microscopic analysis of the brain and the spleen showed granular osmiophilic deposits. Increased neuronal apoptosis was particularly evident in cerebral cortex and abnormal histopathological and electroretinographic (ERG) analyses attested striking retinal degeneration. Progressive deterioration of motor coordination and behavioral parameters continued until eventual death. INTERPRETATION: Our findings show that Ppt1-KI mice reliably recapitulate INCL phenotype providing a platform for testing the efficacy of existing and novel nonsense suppressors in vivo.
        
Title: Treatment of the Ppt1(-/-) mouse model of infantile neuronal ceroid lipofuscinosis with the N-methyl-D-aspartate (NMDA) receptor antagonist memantine Finn R, Kovacs AD, Pearce DA Ref: Journal of Child Neurology, 28:1159, 2013 : PubMed
The neuronal ceroid lipofuscinoses, a family of neurodegenerative lysosomal storage disorders, represent the most common cause of pediatric-onset neurodegeneration. The infantile form has a devastatingly early onset and one of the fastest-progressing disease courses. Despite decades of research, the molecular mechanisms driving neuronal loss in infantile neuronal ceroid lipofuscinosis remain unknown. We have previously shown that N-methyl-d-aspartate (NMDA)-type glutamate receptors in the Ppt1(-/-) mouse model of this disease exhibit a hyperfunctional phenotype and postulate that aberrant glutamatergic activity may contribute to neural pathology in both the mouse model and human patients. To test this hypothesis, we treated Ppt1(-/-) mice with the NMDA receptor antagonist memantine and assessed their response to the drug using an accelerating rotarod. At 20 mg/kg, memantine treatment induced a delayed but notable improvement in Ppt1(-/-) mice. Much remains to be assessed before moving to patient trials, but these results suggest memantine has potential as a treatment.
Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating childhood neurodegenerative lysosomal storage disease (LSD) that has no effective treatment. It is caused by inactivating mutations in the palmitoyl-protein thioesterase-1 (PPT1) gene. PPT1 deficiency impairs the cleavage of thioester linkage in palmitoylated proteins (constituents of ceroid), preventing degradation by lysosomal hydrolases. Consequently, accumulation of lysosomal ceroid leads to INCL. Thioester linkage is cleaved by nucleophilic attack. Hydroxylamine, a potent nucleophilic cellular metabolite, may have therapeutic potential for INCL, but its toxicity precludes clinical application. We found that a hydroxylamine derivative, N-(tert-Butyl) hydroxylamine (NtBuHA), was non-toxic, cleaved thioester linkage in palmitoylated proteins and mediated lysosomal ceroid depletion in cultured cells from INCL patients. In Ppt1(-/-) mice, which mimic INCL, NtBuHA crossed the blood-brain barrier, depleted lysosomal ceroid, suppressed neuronal apoptosis, slowed neurological deterioration and extended lifespan. Our findings provide a proof of concept that thioesterase-mimetic and antioxidant small molecules such as NtBuHA are potential drug targets for thioesterase deficiency diseases such as INCL.
        
Title: Altered glutamate receptor function in the cerebellum of the Ppt1-/- mouse, a murine model of infantile neuronal ceroid lipofuscinosis Finn R, Kovacs AD, Pearce DA Ref: Journal of Neuroscience Research, 90:367, 2012 : PubMed
The neuronal ceroid lipofuscinoses (NCLs) are a family of devastating pediatric neurodegenerative disorders and currently represent the most common form of pediatric-onset neurodegeneration. Infantile NCL (INCL), the most aggressive of these disorders, is caused by mutations in the CLN1 gene that encodes the enzyme palmitoyl protein thioesterase 1 (PPT1). Previous studies have suggested that glutamatergic neurotransmission may be disrupted in INCL, so the present study investigates glutamate receptor function in the Ppt1(-/-) mouse model of INCL by comparing the sensitivity of cultured wild-type (WT) and Ppt1(-/-) cerebellar granule cells to glutamate receptor-mediated toxicity. Ppt1(-/-) neurons were significantly less sensitive to AMPA receptor-mediated toxicity but markedly more vulnerable to NMDA receptor-mediated cell death. Because glutamate receptor function is regulated primarily by the surface expression level of the receptor, the surface level of AMPA and NMDA receptor subunits in the cerebella of WT and Ppt1(-/-) mice was also examined. Western blotting of surface cross-linked cerebellar samples showed a significantly lower surface level of the GluR4 AMPA receptor subunit in Ppt1(-/-) mice, providing a plausible explanation for the decreased vulnerability of Ppt1(-/-) cerebellar neurons to AMPA receptor-mediated cell death. The surface expression of the NR1, NR2A, and NR2B NMDA receptor subunits was similar in the cerebella of WT and Ppt1(-/-) mice, indicating that there is another mechanism behind the increased sensitivity of Ppt1(-/-) cerebellar granule cells to NMDA toxicity. Our results indicate an AMPA receptor hypofunction and NMDA receptor hyperfunction phenotype in Ppt1(-/-) neurons and provide new therapeutic targets for INCL.
PPT1-related neuronal ceroid lipofuscinosis (NCL) is a lysosomal storage disorder caused by deficiency in a soluble lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1). Enzyme replacement therapy (ERT) has not been previously examined in a preclinical animal model. Homozygous PPT1 knockout mice reproduce the known features of the disease, developing signs of motor dysfunction at 5 months of age and death by around 8 months. In the current study, PPT1 knockout mice were treated with purified recombinant PPT1 (0.3 mg, corresponding to 12 mg/kg or 180 U/kg for a 25 g mouse) administered intravenously weekly either 1) from birth; or 2) beginning at 8 weeks of age. The treatment was surprisingly well tolerated and neither anaphylaxis nor antibody formation was observed. In mice treated from birth, survival increased from 236 to 271 days (p<0.001) and the onset of motor deterioration was similarly delayed. In mice treated beginning at 8 weeks, no increases in survival or motor performance were seen. An improvement in neuropathology in the thalamus was seen at 3 months in mice treated from birth, and although this improvement persisted it was attenuated by 7 months. Outside the central nervous system, substantial clearance of autofluorescent storage material in many tissues was observed. Macrophages in spleen, liver and intestine were especially markedly improved, as were acinar cells of the pancreas and tubular cells of the kidney. These findings suggest that ERT may be an option for addressing visceral storage as part of a comprehensive approach to PPT1-related NCL, but more effective delivery methods to target the brain are needed.
Infantile neuronal ceroid lipofuscinosis (INCL) is a fatal neurodegenerative disorder caused by a deficiency of palmitoyl-protein thioesterase-1 (PPT1). We have previously shown that children with INCL have increased risk of hypothermia during anesthesia and that PPT1-deficiency in mice is associated with disruption of adaptive energy metabolism, downregulation of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha), and mitochondrial dysfunction. Here we hypothesized that Ppt1-knockout mice, a well-studied model of INCL that shows many of the neurologic manifestations of the disease, would recapitulate the thermoregulation impairment observed in children with INCL. We also hypothesized that when exposed to cold, Ppt1-knockout mice would be unable to maintain body temperature as in mice thermogenesis requires upregulation of Pgc-1alpha and uncoupling protein 1 (Ucp-1) in brown adipose tissue. We found that the Ppt1-KO mice had lower basal body temperature as they aged and developed hypothermia during cold exposure. Surprisingly, this inability to maintain body temperature during cold exposure in Ppt1-KO mice was associated with an adequate upregulation of Pgc-1alpha and Ucp-1 but with lower levels of sympathetic neurotransmitters in brown adipose tissue. In addition, during baseline conditions, brown adipose tissue of Ppt1-KO mice had less vacuolization (lipid droplets) compared to wild-type animals. After cold stress, wild-type animals had significant decreases whereas Ppt1-KO had insignificant changes in lipid droplets compared with baseline measurements, thus suggesting that Ppt1-KO had less lipolysis in response to cold stress. These results uncover a previously unknown phenotype associated with PPT1 deficiency, that of altered thermoregulation, which is associated with impaired lipolysis and neurotransmitter release to brown adipose tissue during cold exposure. These findings suggest that INCL should be added to the list of neurodegenerative diseases that are linked to alterations in peripheral metabolic processes. In addition, extrapolating these findings clinically, impaired thermoregulation and hypothermia are potential risks in patients with INCL.
        
Title: Synergistic effects of central nervous system-directed gene therapy and bone marrow transplantation in the murine model of infantile neuronal ceroid lipofuscinosis Macauley SL, Roberts MS, Wong AM, McSloy F, Reddy AS, Cooper JD, Sands MS Ref: Annals of Neurology, 71:797, 2012 : PubMed
OBJECTIVE: Infantile neuronal ceroid lipofuscinosis (INCL) is an inherited childhood neurodegenerative disorder caused by the loss of palmitoyl protein thioesterase-1 (PPT1) activity. Affected children suffer from blindness, epilepsy, motor dysfunction, cognitive decline, and premature death. The Ppt1(-/-) mouse shares the histological and clinical features of INCL. Previous single-therapy approaches using small molecule drugs, gene therapy, or neuronal stem cells resulted in partial histological correction, with minimal improvements in motor function or lifespan. Here, we combined central nervous system (CNS)-directed adeno-associated virus (AAV)2/5-mediated gene therapy with bone marrow transplantation (BMT) in the INCL mouse. METHODS: At birth, Ppt1(-/-) and wild-type mice were given either intracranial injections of AAV2/5-PPT1 or bone marrow transplantation, separately as well as in combination. To assess function, we measured rotorod performance monthly as well as lifespan. At terminal time points, we evaluated the therapeutic effects on several INCL-specific parameters, such as cortical thickness, autofluorescent accumulation, and glial activation. Finally, we determined levels of PPT1 enzyme activity and bone marrow engraftment in treated mice. RESULTS: AAV2/5-mediated gene therapy alone resulted in significant histological correction, improved motor function, and increased lifespan. Interestingly, the addition of BMT further increased the lifespan of treated mice and led to dramatic, sustained improvements in motor function. These data are truly striking, given that BMT alone is ineffective, yet it synergizes with CNS-directed gene therapy to dramatically increase efficacy and lifespan. INTERPRETATION: AAV2/5-mediated gene therapy in combination with BMT provides an unprecedented increase in lifespan as well as dramatic improvement on functional and histological parameters.
        
Title: Evaluation of neurodegeneration in a mouse model of infantile batten disease by magnetic resonance imaging and magnetic resonance spectroscopy Munasinghe J, Zhang Z, Kong E, Heffer A, Mukherjee AB Ref: Neurodegener Dis, 9:159, 2012 : PubMed
Neuronal ceroid lipofuscinoses (NCLs) represent a group of common hereditary childhood neurodegenerative storage disorders that have no effective treatment. Mutations in eight different genes cause various forms of NCLs. Infantile NCL (INCL), the most lethal disease, is caused by inactivating mutations in the palmitoyl-protein thioesterase-1 (PPT1) gene. The availability of Ppt1-knockout (Ppt1-KO) mice, which recapitulate virtually all clinical and pathological features of INCL, provides an opportunity to test the effectiveness of novel therapeutic strategies in vivo. However, such studies will require noninvasive methods that can be used to perform serial evaluations of the same animal receiving an experimental therapy. Thus, the development of noninvasive method(s) of evaluation is urgently needed. Here, we report our evaluation of the progression of neurodegeneration in Ppt1-KO mice starting at 3 months of age by MRI and MR spectroscopy (MRS) and repeating these tests using the same mice at 4, 5 and 6 months of age. Our results showed progressive cerebral atrophy, which was associated with histological loss of neuronal content and increase in astroglia. Remarkably, while the brain volumes in Ppt1-KO mice progressively declined with advancing age, the MRS signals, which were significantly lower than those of their wild-type littermates, remained virtually unchanged from 3 to 6 months of age. In addition, our results also showed an abnormality in cerebral blood flow in these mice, which showed progression with age. Our findings provide methods to serially examine the brains of mouse models of neurodegenerative diseases (e.g. Ppt1-KO mice) using noninvasive and nonlethal procedures such as MRI and MRS. These methods may be useful in studies to understand the progression of neuropathology in animal models of neurodegenerative diseases as they allow repeated evaluations of the same animal in which experimental therapies are tested.
Infantile neuronal ceroid lipofuscinosis (INCL) is a profoundly neurodegenerative disease of children caused by a deficiency in the lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1). There is currently no effective therapy for this invariably fatal disease. To date, preclinical experiments using single treatments have resulted in incremental clinical improvements. Therefore, we determined the efficacy of CNS-directed AAV2/5-mediated gene therapy alone and in combination with the systemic delivery of the lysosomotropic PPT1 mimetic phosphocysteamine. Since CNS-directed gene therapy provides relatively high levels of PPT1 activity to specific regions of the brain, we hypothesized that phosphocysteamine would complement that activity in regions expressing subtherapeutic levels of the enzyme. Results indicate that CNS-directed gene therapy alone provided the greatest improvements in biochemical and histological measures as well as motor function and life span. Phosphocysteamine alone resulted in only minor improvements in motor function and no increase in lifespan. Interestingly, phosphocysteamine did not increase the biochemical and histological response when combined with AAV2/5-mediated gene therapy, but it did result in an additional improvement in motor function. These data suggest that a CNS-directed gene therapy approach provides significant clinical benefit, and the addition of the small molecule PPT1 mimetic can further increase that response.
Disruption of the blood-brain barrier (BBB) is a serious complication frequently encountered in neurodegenerative disorders. Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating childhood neurodegenerative lysosomal storage disorder caused by palmitoyl-protein thioesterase-1 (PPT1) deficiency. It remains unclear whether BBB is disrupted in INCL and if so, what might be the molecular mechanism(s) of this complication. We previously reported that the Ppt1-knockout (Ppt1-KO) mice that mimic INCL manifest high levels of oxidative stress and neuroinflammation. Recently, it has been reported that CD4(+) T-helper 17 (T(H)17) lymphocytes may mediate BBB disruption and neuroinflammation, although the precise molecular mechanism(s) remain unclear. We sought to determine: (i) whether the BBB is disrupted in Ppt1-KO mice, (ii) if so, do T(H)17-lymphocytes underlie this complication, and (iii) how might T(H)17 lymphocytes breach the BBB. Here, we report that the BBB is disrupted in Ppt1-KO mice and that T(H)17 lymphocytes producing IL-17A mediate disruption of the BBB by stimulating production of matrix metalloproteinases (MMPs), which degrade the tight junction proteins essential for maintaining BBB integrity. Importantly, dietary supplementation of resveratrol (RSV), a naturally occurring antioxidant/anti-inflammatory polyphenol, markedly reduced the levels of T(H)17 cells, IL-17A and MMPs, and elevated the levels of tight junction proteins, which improved the BBB integrity in Ppt1-KO mice. Intriguingly, we found that RSV suppressed the differentiation of CD4(+) T lymphocytes to IL-17A-positive T(H)17 cells. Our findings uncover a mechanism by which T(H)17 lymphocytes mediate BBB disruption and suggest that small molecules such as RSV that suppress T(H)17 differentiation are therapeutic targets for neurodegenerative disorders such as INCL.
        
Title: Mouse models of neuronal ceroid lipofuscinoses: useful pre-clinical tools to delineate disease pathophysiology and validate therapeutics Shacka JJ Ref: Brain Research Bulletin, 88:43, 2012 : PubMed
The neuronal ceroid lipofuscinoses (NCL, also known as Batten disease) is a devastating neurodegenerative diseases caused by mutations in either soluble enzymes or membrane-associated structural proteins that result in lysosome dysfunction. Different forms of NCL were defined initially by age of onset, affected population and/or type of storage material but collectively represent the most prevalent pediatric hereditary neurovisceral storage disorder. Specific gene mutations are now known for each subclass of NCL in humans that now largely define the disease: cathepsin D (CTSD) for congenital (CLN10 form); palmitoyl protein thioesterase 1 (PPT1) for infantile (CLN1 form); tripeptidyl peptidase 1 (TPP1) for classic late infantile (CLN2 form); variant late infantile-CLN5, CLN6 or CLN8 for variant late infantile forms; and CLN3 for juvenile (CLN3 form). Several mouse models of NCL have been developed, or in some cases exist sporadically, that exhibit mutations producing a progressive neurodegenerative phenotype similar to that observed in human NCL. The study of these mouse models of NCL has dramatically advanced our knowledge of NCL pathophysiology and in some cases has helped delineate the function of proteins mutated in human NCL. In addition, NCL mutant mice have been tested for several different therapeutic approaches and as such they have become important pre-clinical models for validating treatment options. In this review we will assess the current state of mouse models of NCL with regards to their unique pathophysiology and how these mice have helped investigators achieve a better understanding of human NCL disease and therapy.
        
Title: The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis Macauley SL, Pekny M, Sands MS Ref: Journal of Neuroscience, 31:15575, 2011 : PubMed
Infantile neuronal ceroid lipofuscinosis (INCL) is an inherited neurodegenerative disorder affecting the CNS during infancy. INCL is caused by mutations in the CLN1 gene that lead to a deficiency in the lysosomal hydrolase, palmitoyl protein thioesterase 1 (PPT1). A murine model of INCL, the PPT1-deficient (PPT1(-/-)) mouse, is an accurate phenocopy of the human disease. The first pathological change observed in the PPT1(-/-) brain is regional areas of glial fibrillary acidic protein (GFAP) upregulation, which predicts future areas of neurodegeneration. We hypothesized that preventing GFAP and vimentin upregulation in reactive astrocytes will alter the CNS disease. To test this hypothesis, we generated mice simultaneously carrying null mutations in the GFAP, Vimentin, and PPT1 genes (GFAP(-/-)Vimentin(-/-)PPT1(-/-)). Although the clinical and pathological features of the GFAP(-/-)Vimentin(-/-)PPT1(-/-) mice are similar to INCL, the disease appears earlier and progresses more rapidly. One mechanism underlying this accelerated phenotype is a profound neuroinflammatory response within the CNS. Thus, our data identify a protective role for intermediate filament upregulation during astrocyte activation in INCL, a model of chronic neurodegeneration.
        
Title: Omega-3 and omega-6 fatty acids suppress ER- and oxidative stress in cultured neurons and neuronal progenitor cells from mice lacking PPT1 Kim SJ, Zhang Z, Saha A, Sarkar C, Zhao Z, Xu Y, Mukherjee AB Ref: Neuroscience Letters, 479:292, 2010 : PubMed
Reactive oxygen species (ROS) damage brain lipids, carbohydrates, proteins, as well as DNA and may contribute to neurodegeneration. We previously reported that ER- and oxidative stress cause neuronal apoptosis in infantile neuronal ceroid lipofuscinosis (INCL), a lethal neurodegenerative storage disease, caused by palmitoyl-protein thioesterase-1 (PPT1) deficiency. Polyunsaturated fatty acids (PUFA) are essential components of cell membrane phospholipids in the brain and excessive ROS may cause oxidative damage of PUFA leading to neuronal death. Using cultured neurons and neuroprogenitor cells from mice lacking Ppt1, which mimic INCL, we demonstrate that Ppt1-deficient neurons and neuroprogenitor cells contain high levels of ROS, which may cause peroxidation of PUFA and render them incapable of providing protection against oxidative stress. We tested whether treatment of these cells with omega-3 or omega-6 PUFA protects the neurons and neuroprogenitor cells from oxidative stress and suppress apoptosis. We report here that both omega-3 and omega-6 fatty acids protect the Ppt1-deficient cells from ER- as well as oxidative stress and suppress apoptosis. Our results suggest that PUFA supplementation may have neuroprotective effects in INCL.
        
Title: Human recombinant palmitoyl-protein thioesterase-1 (PPT1) for preclinical evaluation of enzyme replacement therapy for infantile neuronal ceroid lipofuscinosis Lu JY, Hu J, Hofmann SL Ref: Mol Genet Metab, 99:374, 2010 : PubMed
Infantile neuronal ceroid lipofuscinosis (INCL, also known as Haltia-Santavuori disease) is a lysosomal storage disorder of infants and children characterized by blindness, seizures and a progressive neurodegenerative course. Recent clinical trials have involved neural stem cells and gene therapy directed to the central nervous system; however, enzyme replacement therapy has never been addressed. In the current paper, we describe the production of human recombinant PPT1 (the defective enzyme in INCL) by standard methods in Chinese Hamster Ovary (CHO) cells. The enzyme is largely mannose 6-phosphorylated as assessed by mannose 6-phosphate receptor binding (80% bound) and taken up rapidly by immortalized patient lymphoblasts, where clearance of PPT substrates was demonstrated (EC(50) of 0.25 nM after overnight incubation). When injected intravenously into PPT1-deficient mice, the clearance of recombinant human PPT1 from plasma was rapid, with a half-life of 10 min. Most of the injected dose was distributed to the kidney and liver and potentially corrective levels were also observed in heart, lung and spleen. Brain uptake was minimal, as expected based on experience with other intravenously administered lysosomal enzymes. The enzyme may be useful as an adjunct to central nervous system-directed therapies and could be used as a starting point for modifications designed to improve brain delivery.
Neuronal ceroid lipofuscinoses (NCLs; Batten disease) are collectively the most frequent autosomal-recessive neurodegenerative disease of childhood, but the underlying cellular and molecular mechanisms remain unclear. Several lines of evidence have highlighted the important role that non-somatic compartments of neurons (axons and synapses) play in the instigation and progression of NCL pathogenesis. Here, we report a progressive breakdown of axons and synapses in the brains of two different mouse models of NCL: Ppt1(-/-) model of infantile NCL and Cln6(nclf) model of variant late-infantile NCL. Synaptic pathology was evident in the thalamus and cortex of these mice, but occurred much earlier within the thalamus. Quantitative comparisons of expression levels for a subset of proteins previously implicated in regulation of axonal and synaptic vulnerability revealed changes in proteins involved with synaptic function/stability and cell-cycle regulation in both strains of NCL mice. Protein expression changes were present at pre/early-symptomatic stages, occurring in advance of morphologically detectable synaptic or axonal pathology and again displayed regional selectivity, occurring first within the thalamus and only later in the cortex. Although significant differences in individual protein expression profiles existed between the two NCL models studied, 2 of the 15 proteins examined (VDAC1 and Pttg1) displayed robust and significant changes at pre/early-symptomatic time-points in both models. Our study demonstrates that synapses and axons are important early pathological targets in the NCLs and has identified two proteins, VDAC1 and Pttg1, with the potential for use as in vivo biomarkers of pre/early-symptomatic axonal and synaptic vulnerability in the NCLs.
Infantile neuronal ceroid lipofuscinosis (INCL, Infantile Batten Disease) is an inherited, neurodegenerative lysosomal storage disorder. INCL is the result of a CLN1 gene mutation leading to a deficiency in palmitoyl protein thioesterase 1 (PPT1) activity. Studies in the forebrain demonstrate the PPT1-deficient mouse (PPT1-/-) mimics the clinical symptoms and underlying pathology of INCL; however, little is known about changes in cerebellar function or pathology. In this study, we demonstrate Purkinje cell loss beginning at 3 months, which correlates with changes in rotarod performance. Concurrently, we observed an early stage reactive gliosis and a primary pathology in astrocytes, including changes in S100beta and GLAST expression. Conversely, there was a late stage granule cell loss, microglial activation, and demyelination. This study suggests that neuronal-glial interactions are the core pathology in the PPT1-/- cerebellum. In addition, these data identify potential endpoints for use in future efficacy studies for the treatment of INCL.
        
Title: A murine model of infantile neuronal ceroid lipofuscinosis-ultrastructural evaluation of storage in the central nervous system and viscera Galvin N, Vogler C, Levy B, Kovacs A, Griffey M, Sands MS Ref: Pediatr Dev Pathol, 11:185, 2008 : PubMed
Infantile neuronal ceroid lipofuscinosis (INCL), also known as Santavuori-Haltia disease, is an inherited neurodegenerative disorder caused by a mutation in the gene encoding the lysosomal enzyme palmitoyl-protein-thioesterase-1 (PPT1). Fatty acid-modified proteins are not degraded and accumulate as granular osmiophilic deposits in cells in the central nervous system; patients have blindness, seizures, progressive psychomotor deterioration, and die in early childhood. Although the disease manifests clinically primarily with neurological symptoms, visceral storage also accumulates. A murine model of INCL due to PPT1 deficiency exhibits clinical findings and pathology similar to those seen in patients with INCL. Homozygous PPT1-deficient mice have a shortened life span and neurological abnormalities including seizures, blindness, and mental and motor deficits. Widespread granular osmiophilic deposits (GRODs) accumulate in lysosomes in neurons and glia in the brain, retinal cells, kidney glomerular cells, aortic smooth muscle cells, and, in lesser amounts, in the fixed-tissue macrophage system. Accumulation of GRODs in aortic smooth muscle cells is accompanied by abnormalities in cardiac function and aortic root dilatation. This PPT1-deficient murine model is a well-defined genetic system that can be used to test potential therapies for lysosomal storage disease and to study the pathophysiology of INCL.
        
Title: Palmitoyl protein thioesterase-1 deficiency impairs synaptic vesicle recycling at nerve terminals, contributing to neuropathology in humans and mice Kim SJ, Zhang Z, Sarkar C, Tsai PC, Lee YC, Dye L, Mukherjee AB Ref: J Clinical Investigation, 118:3075, 2008 : PubMed
Neuronal ceroid lipofuscinoses represent the most common childhood neurodegenerative storage disorders. Infantile neuronal ceroid lipofuscinosis (INCL) is caused by palmitoyl protein thioesterase-1 (PPT1) deficiency. Although INCL patients show signs of abnormal neurotransmission, manifested by myoclonus and seizures, the molecular mechanisms by which PPT1 deficiency causes this abnormality remain obscure. Neurotransmission relies on repeated cycles of exo- and endocytosis of the synaptic vesicles (SVs), in which several palmitoylated proteins play critical roles. These proteins facilitate membrane fusion, which is required for neurotransmitter exocytosis, recycling of the fused SV membrane components, and regeneration of fresh vesicles. However, palmitoylated proteins require depalmitoylation for recycling. Using postmortem brain tissues from an INCL patient and tissue from the PPT1-knockout (PPT1-KO) mice that mimic INCL, we report here that PPT1 deficiency caused persistent membrane anchorage of the palmitoylated SV proteins, which hindered the recycling of the vesicle components that normally fuse with the presynaptic plasma membrane during SV exocytosis. Thus, the regeneration of fresh SVs, essential for maintaining the SV pool size at the synapses, was impaired, leading to a progressive loss of readily releasable SVs and abnormal neurotransmission. This abnormality may contribute to INCL neuropathology.
Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disease caused by deficiency of palmitoyl protein thioesterase 1 (PPT1). INCL results in dramatic loss of thalamocortical neurons, but the disease mechanism has remained elusive. In the present work we describe the first interaction partner of PPT1, the F(1)-complex of the mitochondrial ATP synthase, by co-purification and in vitro-binding assays. In addition to mitochondria, subunits of F(1)-complex have been reported to localize in the plasma membrane, and to be capable of acting as receptors for various ligands such as apolipoprotein A-1. We verified here the plasma membrane localization of F(1)-subunits on mouse primary neurons and fibroblasts by cell surface biotinylation and TIRF-microscopy. To gain further insight into the Ppt1-mediated properties of the F(1)-complex, we utilized the Ppt1-deficient Ppt1(Delta ex4) mice. While no changes in the mitochondrial function could be detected in the brain of the Ppt1(Delta ex4) mice, the levels of F(1)-subunits alpha and beta on the plasma membrane were specifically increased in the Ppt1(Delta ex4) neurons. Significant changes were also detected in the apolipoprotein A-I uptake by the Ppt1(Delta ex4) neurons and the serum lipid composition in the Ppt1(Delta ex4) mice. These data indicate neuron-specific changes for F(1)-complex in the Ppt1-deficient cells and give clues for a possible link between lipid metabolism and neurodegeneration in INCL.
Palmitoyl-protein thioesterase-1 (PPT1) deficiency causes infantile neuronal ceroid lipofuscinosis (INCL), a devastating childhood neurodegenerative storage disorder. We previously reported that neuronal apoptosis in INCL is mediated by endoplasmic reticulum-stress. ER-stress disrupts Ca(2+)-homeostasis and stimulates the expression of Ca(2+)-binding proteins. We report here that in the PPT1-deficient human and mouse brain the levels of S100B, a Ca(2+)-binding protein, and its receptor, RAGE (receptor for advanced glycation end-products) are elevated. We further demonstrate that activation of RAGE signaling in astroglial cells mediates pro-inflammatory cytokine production, which is inhibited by SiRNA-mediated suppression of RAGE expression. We propose that RAGE signaling contributes to neuroinflammation in INCL.
Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of children, characterized by selective death of neocortical neurons. To understand early disease mechanisms in INCL, we have studied Ppt1(Deltaex4) knock-out mouse neurons in culture and acute brain slices. Global transcript profiling showed deregulation of key neuronal functions in knock-out mice including cholesterol metabolism, neuronal maturation, and calcium homeostasis. Cholesterol metabolism showed major changes; sterol biosynthesis was enhanced and steady-state amounts of sterols were altered at the cellular level. Changes were also present in early maturation of Ppt1(Deltaex4) neurons indicated by increased proliferative capacity of neuronal stem cells. Knock-out neurons presented unaltered electrophysiological properties suggesting uncompromised synaptic function in young animals. However, knock-out neurons exhibited more efficient recovery from glutamate-induced calcium transients, possibly indicating neuroprotective activation. This study established that the neuronal deregulation in INCL is linked to neuronal maturation, lipid metabolism and calcium homeostasis.
BACKGROUND: Neuronal ceroid lipofuscinoses (NCLs) are collectively the most common type of recessively inherited childhood encephalopathies. The most severe form of NCL, infantile neuronal ceroid lipofuscinosis (INCL), is caused by mutations in the CLN1 gene, resulting in a deficiency of the lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1). The deficiency of PPT1 causes a specific death of neocortical neurons by a mechanism, which is currently unclear. To understand the function of PPT1 in more detail, we have further analyzed the basic properties of the protein, especially focusing on possible differences in non-neuronal and neuronal cells. RESULTS: Our study shows that the N-glycosylation of N197 and N232, but not N212, is essential for PPT1's activity and intracellular transport. Deglycosylation of overexpressed PPT1 produced in neurons and fibroblasts demonstrates differentially modified PPT1 in different cell types. Furthermore, antibody internalization assays showed differences in PPT1 transport when compared with a thoroughly characterized lysosomal enzyme aspartylglucosaminidase (AGA), an important observation potentially influencing therapeutic strategies. PPT1 was also demonstrated to form oligomers by size-exclusion chromatography and co-immunoprecipitation assays. Finally, the consequences of disease mutations were analyzed in the perspective of our new results, suggesting that the mutations increase both the degree of glycosylation of PPT1 and its ability to form complexes. CONCLUSION: Our current study describes novel properties for PPT1. We observe differences in PPT1 processing and trafficking in neuronal and non-neuronal cells, and describe for the first time the ability of PPT1 to form complexes. Understanding the basic characteristics of PPT1 is fundamental in order to clarify the molecular pathogenesis behind neurodegeneration in INCL.
        
Title: Gene expression profiling in a mouse model of infantile neuronal ceroid lipofuscinosis reveals upregulation of immediate early genes and mediators of the inflammatory response Qiao X, Lu JY, Hofmann SL Ref: BMC Neurosci, 8:95, 2007 : PubMed
BACKGROUND: The infantile form of neuronal ceroid lipofuscinosis (also known as infantile Batten disease) is caused by hereditary deficiency of a lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1), and is characterized by severe cortical degeneration with blindness and cognitive and motor dysfunction. The PPT1-deficient knockout mouse recapitulates the key features of the disorder, including seizures and death by 7-9 months of age. In the current study, we compared gene expression profiles of whole brain from PPT1 knockout and normal mice at 3, 5 and 8 months of age to identify temporal changes in molecular pathways implicated in disease pathogenesis. RESULTS: A total of 267 genes were significantly (approximately 2-fold) up- or downregulated over the course of the disease. Immediate early genes (Arc, Cyr61, c-fos, jun-b, btg2, NR4A1) were among the first genes upregulated during the presymptomatic period whereas immune response genes dominated at later time points. Chemokine ligands and protease inhibitors were among the most transcriptionally responsive genes. Neuronal survival factors (IGF-1 and CNTF) and a negative regulator of neuronal apoptosis (DAP kinase-1) were upregulated late in the course of the disease. Few genes were downregulated; these included the alpha2 subunit of the GABA-A receptor, a component of cortical and hippocampal neurons, and Hes5, a transcription factor important in neuronal differentiation. CONCLUSION: A molecular description of gene expression changes occurring in the brain throughout the course of neuronal ceroid lipofuscinosis suggests distinct phases of disease progression, provides clues to potential markers of disease activity, and points to new targets for therapy.
In the majority of neurodegenerative storage disorders, neuronal death in the brain is followed by infiltration of phagocytic cells (e.g. activated microglia, astroglia and macrophages) for the efficient removal of cell corpses. However, it is increasingly evident that these phagocytes may also cause death of adjoining viable neurons contributing to rapid progression of neurodegeneration. Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating, neurodegenerative, lysosomal storage disorder caused by inactivating mutations in the palmitoyl-protein thioesterase-1 (PPT1) gene. PPT1 catalyzes the cleavage of thioester linkages in S-acylated (palmitoylated) proteins and its deficiency leads to abnormal accumulation of thioesterified polypeptides (ceroid) in lysosomes causing INCL pathogenesis. PPT1-knockout (PPT1-KO) mice mimic the clinical and pathological features of human INCL including rapid neuronal death by apoptosis and phagocyte infiltration. We previously reported that in PPT1-KO mice, the neurons undergo endoplasmic reticulum stress activating unfolded protein response, which mediates caspase-12 activation and apoptosis. However, the molecular mechanism(s) by which the phagocytic cells are recruited in the PPT1-KO mouse brain remains poorly understood. We report here that increased production of lysophosphatidylcholine (LPC), catalyzed by the activation of cytosolic phospholipase A(2) (cPLA(2)) in the PPT1-KO mouse brain, is a 'lipid signal' for phagocyte recruitment. We also report that an age-dependent increase in LPC levels in the PPT1-KO mouse brain positively correlates with elevated expression of the genes characteristically associated with phagocytes. We propose that increased cPLA(2)-catalyzed LPC production in the brain is at least one of the mechanisms that mediate phagocyte infiltration contributing to INCL neuropathology.
        
Title: Palmitoyl protein thioesterase 1 (PPT1) deficiency causes endocytic defects connected to abnormal saposin processing Ahtiainen L, Luiro K, Kauppi M, Tyynela J, Kopra O, Jalanko A Ref: Experimental Cell Research, 312:1540, 2006 : PubMed
Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of the childhood caused by mutations in the gene encoding palmitoyl protein thioesterase 1 (PPT1). PPT1 localizes to late endosomes/lysosomes of non-neuronal cells and in neurons also to presynaptic areas. PPT1-deficiency causes massive death of cortical neurons and most tissues show an accumulation of saposins A and D. We have here studied endocytic pathways, saposin localization and processing in PPT1-deficient fibroblasts to elucidate the cellular defects resulting in accumulation of specific saposins. We show that PPT1-deficiency causes a defect in fluid-phase and receptor-mediated endocytosis, whereas marker uptake and recycling endocytosis remain intact. Furthermore, we show that saposins A and D are more abundant and relocalized in PPT-deficient fibroblasts and mouse primary neurons. Metabolic labeling and immunoprecipitation analyses revealed hypersecretion and abnormal processing of prosaposin, implying that the accumulation of saposins may result from endocytic defects. We show for the first time a connection between saposin storage and a defect in the endocytic pathway of INCL cells. These data provide new insights into the metabolism of PPT1-deficient cells and offer a basis for further studies on cellular processes causing neuronal death in INCL and other neurodegenerative diseases.
        
Title: Palmitoyl-protein thioesterase-1 deficiency leads to the activation of caspase-9 and contributes to rapid neurodegeneration in INCL Kim SJ, Zhang Z, Lee YC, Mukherjee AB Ref: Hum Mol Genet, 15:1580, 2006 : PubMed
The infantile neuronal ceroid lipofuscinosis (INCL), a rare (one in 100 000 births) but one of the most lethal inherited neurodegenerative storage disorders of childhood, is caused by inactivating mutations in the palmitoyl-protein thioesterase-1 (PPT1) gene. PPT1 cleaves thioester linkages in s-acylated (palmitoylated) proteins and facilitates their degradation and/or recycling. Thus, PPT1-deficiency leads to an abnormal intracellular accumulation of s-acylated proteins causing INCL pathogenesis. Although neuronal apoptosis is the suggested cause of neurodegeneration in this disease, the molecular mechanism(s) remains poorly understood. We recently reported that one of the major pathways of neuronal apoptosis in PPT1-knockout (PPT1-KO) mice that mimic INCL, is mediated by endoplasmic reticulum (ER) stress-induced caspase-12 activation. ER stress also increases the production of reactive oxygen species (ROS), disrupts Ca(2+) homeostasis and increases the potential for destabilizing mitochondrial membrane. Mitochondrial membrane destabilization activates caspase-9 present in this organelle, and can mediate apoptosis. We report here that the levels of superoxide dismutase (SOD), most likely induced by ROS, in human INCL as well as PPT1-KO mouse brain tissues are markedly elevated. Moreover, we demonstrate that activated caspase-3 and cleaved-PARP, indicative of apoptosis, are also increased in these tissues. Using cultured neurospheres from PPT1-KO and wild-type mouse fetuses, we further demonstrate that the levels of ROS, SOD-2, cleaved-caspase-9, activated caspase-3 and cleaved-PARP are elevated. We propose that: (i) ER stress due to PPT1-deficiency increases ROS and disrupts calcium homeostasis activating caspase-9 and (ii) caspase-9 activation mediates caspase-3 activation and apoptosis contributing to rapid neurodegeneration in INCL.
Numerous proteins undergo modification by palmitic acid (S-acylation) for their biological functions including signal transduction, vesicular transport and maintenance of cellular architecture. Although palmitoylation is an essential modification, these proteins must also undergo depalmitoylation for their degradation by lysosomal proteases. Palmitoyl-protein thioesterase-1 (PPT1), a lysosomal enzyme, cleaves thioester linkages in S-acylated proteins and removes palmitate residues facilitating the degradation of these proteins. Thus, inactivating mutations in the PPT1 gene cause infantile neuronal ceroid lipofuscinosis (INCL), a devastating neurodegenerative storage disorder of childhood. Although rapidly progressing brain atrophy is the most dramatic pathological manifestation of INCL, the molecular mechanism(s) remains unclear. Using PPT1-knockout (PPT1-KO) mice that mimic human INCL, we report here that the endoplasmic reticulum (ER) in the brain cells of these mice is structurally abnormal. Further, we demonstrate that the level of growth-associated protein-43 (GAP-43), a palmitoylated neuronal protein, is elevated in the brains of PPT1-KO mice. Moreover, forced expression of GAP-43 in PPT1-deficient cells results in the abnormal accumulation of this protein in the ER. Consistent with these results, we found evidence for the activation of unfolded protein response (UPR) marked by elevated levels of phosphorylated translation initiation factor, eIF2alpha, increased expression of chaperone proteins such as glucose-regulated protein-78 and activation of caspase-12, a cysteine proteinase in the ER, mediating caspase-3 activation and apoptosis. Our results, for the first time, link PPT1 deficiency with the activation of UPR, apoptosis and neurodegeneration in INCL and identify potential targets for therapeutic intervention in this uniformly fatal disease.
Infantile neuronal ceroid lipofuscinosis (INCL) is a neurodegenerative disorder caused by mutations in the gene encoding the lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1). The earliest clinical sign in INCL is blindness, followed by seizures, cognitive deficits, and early death. Little is known about the progression of the visual deficits in INCL. Here we characterize the progressive retinal dysfunction and examine the efficacy of AAV2-mediated ocular gene therapy in the murine model of INCL. Significant decreases in both mixed rod/cone and pure cone electroretinographic amplitudes were observed at as early as 2 months of age. Intravitreal injection of AAV2-PPT1 increased enzyme levels in the eye to greater than normal levels. The increased PPT1 activity correlated with improvements in the histological abnormalities as well as both mixed rod/cone and pure cone functions. We also demonstrated that palmitoyl protein thioesterase-1 activity was detected in the brain following intravitreal injection. The brain activity is likely due to anterograde axonal transport along the optic tracts. Interestingly, the degree of neurodegeneration throughout the visual pathways of the brain was greatly reduced in AAV-treated INCL mice. Therefore, intravitreal AAV-mediated gene therapy has direct benefits to the eye and to distal sites in the brain along the visual pathways.
Infantile Neuronal Ceroid Lipofuscinosis (INCL) results from mutations in the palmitoyl protein thioesterase (PPT1, CLN1) gene and is characterized by dramatic death of cortical neurons. We generated Ppt1Deltaex4 mice by a targeted deletion of exon 4 of the mouse Ppt1 gene. Similar to the clinical phenotype, the homozygous mutants show loss of vision from the age of 8 weeks, seizures after 4 months and paralysis of hind limbs at the age of 5 months. Autopsy revealed a dramatic loss of brain mass and histopathology demonstrated accumulation of autofluorescent granular osmiophilic deposits (GRODS), both characteristic of INCL. At 6 months, the homozygous Ppt1Deltaex4 mice showed a prominent loss of GABAergic interneurons in several brain areas. The transcript profiles of wild-type and mutant mouse brains revealed that most prominent alterations involved parts of the immune response, implicating alterations similar to those of the aging brain and neurodegeneration. These findings make the Ppt1Deltaex4 mouse an interesting model for the inflammation-associated death of interneurons.
        
Title: Progressively reduced synaptic vesicle pool size in cultured neurons derived from neuronal ceroid lipofuscinosis-1 knockout mice Virmani T, Gupta P, Liu X, Kavalali ET, Hofmann SL Ref: Neurobiol Dis, 20:314, 2005 : PubMed
The neuronal ceroid lipofuscinoses are a newly-recognized group of lysosomal storage disorders in which neurodegeneration predominates. The pathophysiological basis for this is unknown. In the current paper, we sought to determine whether neurons that lack the enzyme responsible for the infantile form of neuronal ceroid lipofuscinosis (INCL) display abnormalities in culture that could be related to the clinical disorder. Electrophysiological and fluorescent dye studies were performed using cortical neuronal cultures established from postnatal day 2 palmitoyl-protein thioesterase-1 (Ppt1) knockout mice. We found a 30% reduction in synaptic vesicle number per bouton that was progressive with time in culture as well as an elevation in lysosomal pH, whereas a number of passive and active membrane properties of the neurons were normal. The reduction in vesicle pool size was also reflected in a decrease in the frequency of miniature synaptic currents. The progressive and gradual decline in vesicle numbers and miniature event frequency we observed here may be an early indicator of synapse degeneration, in keeping with observations during competitive stimulation at the neuromuscular junction or age-related synapse elimination recently reported by others. PPT1 did not colocalize with synaptic vesicle or synapse markers, suggesting that lysosomal dysfunction leads indirectly to the synaptic abnormalities. We conclude that from an early age, neurons deficient in PPT1 enzyme activity display intrinsically abnormal properties that could potentially explain key features of the clinical disease, such as myoclonus and seizures.
        
Title: Pre-sertoli specific gene expression profiling reveals differential expression of Ppt1 and Brd3 genes within the mouse genital ridge at the time of sex determination Boyer A, Lussier JG, Sinclair AH, McClive PJ, Silversides DW Ref: Biol Reprod, 71:820, 2004 : PubMed
In mammals, testis determination is initiated when the SRY gene is expressed in pre-Sertoli cells of the undifferentiated genital ridge. SRY directs the differentiation of these cells into Sertoli cells and initiates the testis differentiation pathway via currently ill-defined mechanisms. Because Sertoli cells are the first somatic cells to differentiate within the developing testis, it is likely that the signals for orchestrating testis determination are expressed within pre-Sertoli cells. We have previously generated a transgenic mouse line that expresses green fluorescent protein under the control of the pig SRY promoter, thus marking pre-Sertoli cells via fluorescence. We have now used suppression-subtractive hybridization (SSH) to construct a normalized cDNA library derived from fluorescence-activated cell sorting (FACS) purified pre-Sertoli cells taken from 12.0 to 12.5 days postcoitum (dpc) fetal transgenic mouse testes. A total of 35 candidate cDNAs for known genes were identified. Detection of Sf1, a gene known for its role in sex determination as well as Vanin-1, Vcp1, Sparc, and Aldh3a1, four genes previously identified in differential screens as gene overexpressed in developing testis compared with ovary, support the biological validity of our experimental model. Whole-mount in situ hybridization was performed on the 35 candidate genes for qualitative differential expression between male and female genital ridges; six were upregulated in the testis and one was upregulated in the ovary. The expression pattern of two genes, Ppt1 and Brd3, were examined in further detail. We conclude that combining transgenically marked fluorescent cell populations with differential expression screening is useful for cell expression profiling in developmental systems such as sex determination and differentiation.
Infantile and juvenile neuronal ceroid lipofuscinosis (NCLs) are progressive neurodegenerative disorders of childhood with distinct ages of clinical onset, but with a similar pathological outcome. Infantile and juvenile NCL are inherited in an autosomal recessive manner due to mutations in the CLN1 and CLN3 genes, respectively. Recently developed Cln1- and Cln3-knockout mouse models share similarities in pathology with the respective human disease. Using oligonucleotide arrays we identified reproducible changes in gene expression in the brains of both 10-week-old Cln1- and Cln3-knockout mice as compared to wild-type controls, and confirmed changes in levels of several of the cognate proteins by immunoblotting. Despite the similarities in pathology, the two mutations affect the expression of different, non-overlapping sets of genes. The possible significance of these changes and the pathological mechanisms underlying NCL diseases are discussed.
The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.
Palmitoyl protein thioesterase (PPT) is the defective enzyme in infantile neuronal ceroid lipofuscinosis (INCL), which is a recessively inherited, progressive neurodegenerative disorder. We present here the cloning, chromosomal mapping, genomic structure, and the expression of the cDNA of mouse PPT. The mouse PPT gene spans >21 kb of genomic DNA and contains nine exons with a coding sequence of 918 bp. Fluorescence in situ hybridization to metaphase chromosomes localized the mouse PPT gene to the chromosome 4 conserved syntenic region with human chromosome 1p32 where the human PPT is located. PPT is expressed widely in a variety of mouse tissues. The mouse PPT cDNA is conserved highly with the human and rat PPT both at the nucleotide and amino acid sequence level. Transient expression of mouse PPT in COS-1 cells yielded a 38/36-kD differentially glycosylated polypeptide that was also secreted into culture media. Immunofluorescence analysis of transiently transfected HeLa cells indicated lysosomal localization of mouse PPT. Based on the high conservation of the gene and polypeptide structure as well as similar processing and intracellular localization, the function of PPT in mouse and human are likely to be very similar.