(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Actinobacteria [phylum]: NE > Actinobacteria [class]: NE > Corynebacteriales: NE > Mycobacteriaceae: NE > Mycobacterium: NE > Mycobacterium tuberculosis complex: NE > Mycobacterium tuberculosis: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Mycobacterium tuberculosis TKK-01-0051: N, E.
Mycobacterium tuberculosis EAS054: N, E.
Mycobacterium tuberculosis F11: N, E.
Mycobacterium tuberculosis KZN 1435: N, E.
Mycobacterium tuberculosis H37Ra: N, E.
Mycobacterium tuberculosis T17: N, E.
Mycobacterium tuberculosis T85: N, E.
Mycobacterium tuberculosis 94_M4241A: N, E.
Mycobacterium tuberculosis 02_1987: N, E.
Mycobacterium tuberculosis T46: N, E.
Mycobacterium tuberculosis C: N, E.
Mycobacterium tuberculosis GM 1503: N, E.
Mycobacterium tuberculosis CPHL_A: N, E.
Mycobacterium tuberculosis K85: N, E.
Mycobacterium tuberculosis CDC1551: N, E.
Mycobacterium tuberculosis SUMu011: N, E.
Mycobacterium tuberculosis SUMu010: N, E.
Mycobacterium tuberculosis SUMu009: N, E.
Mycobacterium tuberculosis SUMu008: N, E.
Mycobacterium tuberculosis SUMu007: N, E.
Mycobacterium tuberculosis SUMu006: N, E.
Mycobacterium tuberculosis SUMu003: N, E.
Mycobacterium tuberculosis SUMu012: N, E.
Mycobacterium tuberculosis SUMu005: N, E.
Mycobacterium tuberculosis SUMu004: N, E.
Mycobacterium tuberculosis SUMu002: N, E.
Mycobacterium tuberculosis SUMu001: N, E.
Mycobacterium tuberculosis str. Haarlem: N, E.
Mycobacterium tuberculosis T92: N, E.
Mycobacterium tuberculosis str. Erdman = ATCC 35801: N, E.
Mycobacterium tuberculosis FJ05194: N, E.
Mycobacterium tuberculosis EAI5/NITR206: N, E.
Mycobacterium tuberculosis UT205: N, E.
Mycobacterium tuberculosis CCDC5180: N, E.
Mycobacterium tuberculosis H37Rv: N, E.
Mycobacterium tuberculosis CDC1551A: N, E.
Mycobacterium tuberculosis CCDC5079: N, E.
Mycobacterium tuberculosis BT2: N, E.
Mycobacterium tuberculosis EAI5: N, E.
Mycobacterium tuberculosis W-148: N, E.
Mycobacterium tuberculosis CTRI-2: N, E.
Mycobacterium tuberculosis RGTB327: N, E.
Mycobacterium tuberculosis str. Haarlem/NITR202: N, E.
Mycobacterium tuberculosis '98-R604 INH-RIF-EM': N, E.
Mycobacterium tuberculosis str. Beijing/NITR203: N, E.
Mycobacterium tuberculosis HKBS1: N, E.
Mycobacterium tuberculosis CAS/NITR204: N, E.
Mycobacterium tuberculosis 7199-99: N, E.
Mycobacterium tuberculosis KZN 605: N, E.
Mycobacterium tuberculosis NCGM2209: N, E.
Mycobacterium tuberculosis BT1: N, E.
Mycobacterium tuberculosis RGTB423: N, E.
Mycobacterium tuberculosis KZN 4207: N, E.
Mycobacterium tuberculosis GuangZ0019: N, E.
Mycobacterium tuberculosis 2092HD: N, E.
Mycobacterium tuberculosis variant caprae: N, E.
Mycobacterium tuberculosis variant africanum: N, E.
Mycobacterium tuberculosis variant microti OV254: N, E.
Mycobacterium africanum K85: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MIALPALEGVEHRHVDVAEGVRIHVADAGPADGPAVMLVHGFPQNWWEWR DLIGPLAADGNRVLCPDLRGAGWSSAPRSRYTKTEMADDLAAVLDGLGVA KVKLVAHDWGGPVAFIMMLRHPEKVTGFFGVNTVAPWVKRDLGMLRNMWR FWYQIPMSLPVIGPRVISDPKGRYFRLLTGWVGGGFRVPDDDVRLYLDCM REPGHAEAGSRWYRTFQTREMLRWLRGEYNDARVDVPVRWLHGTGDPVIT PDLLDGYAERASDFEVELVDGVGHWIVEQRPELVLDRVRAFLAAGTEQRD
Epoxide hydrolases play an important role in the biodegradation of organic compounds and are potentially useful in enantioselective biocatalysis. An analysis of various genomic databases revealed that about 20% of sequenced organisms contain one or more putative epoxide hydrolase genes. They were found in all domains of life, and many fungi and actinobacteria contain several putative epoxide hydrolase-encoding genes. Multiple sequence alignments of epoxide hydrolases with other known and putative alpha/beta-hydrolase fold enzymes that possess a nucleophilic aspartate revealed that these enzymes can be classified into eight phylogenetic groups that all contain putative epoxide hydrolases. To determine their catalytic activities, 10 putative bacterial epoxide hydrolase genes and 2 known bacterial epoxide hydrolase genes were cloned and overexpressed in Escherichia coli. The production of active enzyme was strongly improved by fusion to the maltose binding protein (MalE), which prevented inclusion body formation and facilitated protein purification. Eight of the 12 fusion proteins were active toward one or more of the 21 epoxides that were tested, and they converted both terminal and nonterminal epoxides. Four of the new epoxide hydrolases showed an uncommon enantiopreference for meso-epoxides and/or terminal aromatic epoxides, which made them suitable for the production of enantiopure (S,S)-diols and (R)-epoxides. The results show that the expression of epoxide hydrolase genes that are detected by analyses of genomic databases is a useful strategy for obtaining new biocatalysts.
Virulence and immunity are poorly understood in Mycobacterium tuberculosis. We sequenced the complete genome of the M. tuberculosis clinical strain CDC1551 and performed a whole-genome comparison with the laboratory strain H37Rv in order to identify polymorphic sequences with potential relevance to disease pathogenesis, immunity, and evolution. We found large-sequence and single-nucleotide polymorphisms in numerous genes. Polymorphic loci included a phospholipase C, a membrane lipoprotein, members of an adenylate cyclase gene family, and members of the PE/PPE gene family, some of which have been implicated in virulence or the host immune response. Several gene families, including the PE/PPE gene family, also had significantly higher synonymous and nonsynonymous substitution frequencies compared to the genome as a whole. We tested a large sample of M. tuberculosis clinical isolates for a subset of the large-sequence and single-nucleotide polymorphisms and found widespread genetic variability at many of these loci. We performed phylogenetic and epidemiological analysis to investigate the evolutionary relationships among isolates and the origins of specific polymorphic loci. A number of these polymorphisms appear to have occurred multiple times as independent events, suggesting that these changes may be under selective pressure. Together, these results demonstrate that polymorphisms among M. tuberculosis strains are more extensive than initially anticipated, and genetic variation may have an important role in disease pathogenesis and immunity.
Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.
        
1 lessTitle: The alpha/beta Hydrolase Fold Proteins of Mycobacterium tuberculosis, With Reference to their Contribution to Virulence Johnson G Ref: Curr Protein Pept Sci, 18:190, 2016 : PubMed
The alpha/beta hydrolase fold superfamily is an ancient and widely diversified group of primarily hydrolytic enzymes. In this review, the adaptations of these proteins to the pathogenic lifestyle of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, are examined. Of the 105 alpha/beta hydrolases identified in Mtb, many are associated with lipid metabolism, particularly in the biosynthesis and maintenance of the Mtb's unique cell envelope, as well in the large number of extracellular lipases that are likely responsible for degradation of host lipid material. alpha/beta hydrolase fold proteins are also involved in the evasion and modulation of the immune response, detoxification and metabolic adaptations, including growth, response to acidification of the intracellular environment and dormancy. A striking feature of Mtb's alpha/beta hydrolases is their diversification into virulence-associated niches. It is clear that the alpha/beta hydrolase fold family has made a significant contribution to Mtb's remarkable success as a pathogen.
        
Title: Diversity and biocatalytic potential of epoxide hydrolases identified by genome analysis van Loo B, Kingma J, Arand M, Wubbolts MG, Janssen DB Ref: Applied Environmental Microbiology, 72:2905, 2006 : PubMed
Epoxide hydrolases play an important role in the biodegradation of organic compounds and are potentially useful in enantioselective biocatalysis. An analysis of various genomic databases revealed that about 20% of sequenced organisms contain one or more putative epoxide hydrolase genes. They were found in all domains of life, and many fungi and actinobacteria contain several putative epoxide hydrolase-encoding genes. Multiple sequence alignments of epoxide hydrolases with other known and putative alpha/beta-hydrolase fold enzymes that possess a nucleophilic aspartate revealed that these enzymes can be classified into eight phylogenetic groups that all contain putative epoxide hydrolases. To determine their catalytic activities, 10 putative bacterial epoxide hydrolase genes and 2 known bacterial epoxide hydrolase genes were cloned and overexpressed in Escherichia coli. The production of active enzyme was strongly improved by fusion to the maltose binding protein (MalE), which prevented inclusion body formation and facilitated protein purification. Eight of the 12 fusion proteins were active toward one or more of the 21 epoxides that were tested, and they converted both terminal and nonterminal epoxides. Four of the new epoxide hydrolases showed an uncommon enantiopreference for meso-epoxides and/or terminal aromatic epoxides, which made them suitable for the production of enantiopure (S,S)-diols and (R)-epoxides. The results show that the expression of epoxide hydrolase genes that are detected by analyses of genomic databases is a useful strategy for obtaining new biocatalysts.
Virulence and immunity are poorly understood in Mycobacterium tuberculosis. We sequenced the complete genome of the M. tuberculosis clinical strain CDC1551 and performed a whole-genome comparison with the laboratory strain H37Rv in order to identify polymorphic sequences with potential relevance to disease pathogenesis, immunity, and evolution. We found large-sequence and single-nucleotide polymorphisms in numerous genes. Polymorphic loci included a phospholipase C, a membrane lipoprotein, members of an adenylate cyclase gene family, and members of the PE/PPE gene family, some of which have been implicated in virulence or the host immune response. Several gene families, including the PE/PPE gene family, also had significantly higher synonymous and nonsynonymous substitution frequencies compared to the genome as a whole. We tested a large sample of M. tuberculosis clinical isolates for a subset of the large-sequence and single-nucleotide polymorphisms and found widespread genetic variability at many of these loci. We performed phylogenetic and epidemiological analysis to investigate the evolutionary relationships among isolates and the origins of specific polymorphic loci. A number of these polymorphisms appear to have occurred multiple times as independent events, suggesting that these changes may be under selective pressure. Together, these results demonstrate that polymorphisms among M. tuberculosis strains are more extensive than initially anticipated, and genetic variation may have an important role in disease pathogenesis and immunity.
Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.