Oryza sativa subsp. japonica (Rice); O. meridionalis; O. glumipatula; O. nivara (Indian wild rice); O. rufipogon (Brownbeard rice); O. glaberrima; O. barthii; O. brachyantha; O. punctata (Red rice). Probable glutamyl endopeptidase, chloroplastic
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Viridiplantae: NE > Streptophyta: NE > Streptophytina: NE > Embryophyta: NE > Tracheophyta: NE > Euphyllophyta: NE > Spermatophyta: NE > Magnoliophyta: NE > Mesangiospermae: NE > Liliopsida: NE > Petrosaviidae: NE > commelinids: NE > Poales: NE > Poaceae: NE > BOP clade: NE > Oryzoideae: NE > Oryzeae: NE > Oryzinae: NE > Oryza: NE > Oryza sativa: NE > Oryza sativa Japonica Group: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Oryza sativa Japonica Group: N, E.
Oryza meridionalis: N, E.
Oryza glumipatula: N, E.
Oryza nivara: N, E.
Oryza rufipogon: N, E.
Oryza glaberrima: N, E.
Oryza sativa subsp. indica: N, E.
Oryza sativa Indica Group: N, E.
Oryza barthii: N, E.
Oryza brachyantha: N, E.
Oryza punctata: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSSLTILLQRACLRFALLPVPPLRAPLRPPRRPLGLPRRSAMSSSAASRL SHIVAAAGGAAGESSEPPAAAAAASGLAQEDDDLSSAMMGYRLPPKEIQD IVDAPPLPVLSFSPSKDKILFLKRRALPPLSDLAKPEEKLAGVRIDGYSN TRSRMSFYTGIGIHKLMDDGTLGPEKVVHGYPEGARINFVTWSQDGRHLS FSVRVDEEDNTSGKLRLWIADVESGEARPLFKSPEIYLNAIFDSFVWVNN STLLVCTIPLSRGAPPQKPSVPSGPKIQSNETSNVVQVRTFQDLLKDEYD ADLFDYYATSQLVLASFDGTVKPIGPPAVYTSIDPSPDDKYLMISSIHRP YSYIVPCGRFPKKVELWTVDGEFIRELCDLPLAEDIPIATSSVRKGKRSI YWRPDKPAMLYWVETQDGGDAKVEVSPRDIVYMENAEPINGEQPEILHKL DLRYAGTSWCDESLALVYESWYKTRKTRTWVISPDKKDVSPRILFDRSSE DVYSDPGSPMLRRTAMGTYVIAKVKKQDENTYILLNGMGATPEGNVPFLD LFDINTGSKERIWQSDKEKYYETVVALMSDKTDGELPLEKLKILTSKESK TENTQYYLQIWPEKKQVQITDFPHPYPQLASLYKEMIRYQRKDGVQLTAT LYLPPGYDPSQDGPLPCLVWSYPGEFKSKDAAGQVRGSPNEFPGIGATSP LLWLARGFAILSGPTIPIIGEGDEEANDRYVEQLVTSAEAAAEEVVRRGV AHPDKIAVGGHSYGAFMTANLLAHAPHLFCCGIARSGAYNRTLTPFGFQN EDRTLWEATNTYVEMSPFMSANKIKKPILLIHGEQDNNSGTLTMQSDRFF NALKGHGALSRLVILPFESHGYSARESIMHVLWETDRWLQKYCLSGSSKT DSDSVADTENKTVSASGGGAPCEGPEAEGFSSMQRSLL
The Rice Annotation Project Database (RAP-DB) was created to provide the genome sequence assembly of the International Rice Genome Sequencing Project (IRGSP), manually curated annotation of the sequence, and other genomics information that could be useful for comprehensive understanding of the rice biology. Since the last publication of the RAP-DB, the IRGSP genome has been revised and reassembled. In addition, a large number of rice-expressed sequence tags have been released, and functional genomics resources have been produced worldwide. Thus, we have thoroughly updated our genome annotation by manual curation of all the functional descriptions of rice genes. The latest version of the RAP-DB contains a variety of annotation data as follows: clone positions, structures and functions of 31 439 genes validated by cDNAs, RNA genes detected by massively parallel signature sequencing (MPSS) technology and sequence similarity, flanking sequences of mutant lines, transposable elements, etc. Other annotation data such as Gnomon can be displayed along with those of RAP for comparison. We have also developed a new keyword search system to allow the user to access useful information. The RAP-DB is available at: http://rapdb.dna.affrc.go.jp/ and http://rapdb.lab.nig.ac.jp/.
Rice (Oryza sativa L.) chromosome 3 is evolutionarily conserved across the cultivated cereals and shares large blocks of synteny with maize and sorghum, which diverged from rice more than 50 million years ago. To begin to completely understand this chromosome, we sequenced, finished, and annotated 36.1 Mb ( approximately 97%) from O. sativa subsp. japonica cv Nipponbare. Annotation features of the chromosome include 5915 genes, of which 913 are related to transposable elements. A putative function could be assigned to 3064 genes, with another 757 genes annotated as expressed, leaving 2094 that encode hypothetical proteins. Similarity searches against the proteome of Arabidopsis thaliana revealed putative homologs for 67% of the chromosome 3 proteins. Further searches of a nonredundant amino acid database, the Pfam domain database, plant Expressed Sequence Tags, and genomic assemblies from sorghum and maize revealed only 853 nontransposable element related proteins from chromosome 3 that lacked similarity to other known sequences. Interestingly, 426 of these have a paralog within the rice genome. A comparative physical map of the wild progenitor species, Oryza nivara, with japonica chromosome 3 revealed a high degree of sequence identity and synteny between these two species, which diverged approximately 10,000 years ago. Although no major rearrangements were detected, the deduced size of the O. nivara chromosome 3 was 21% smaller than that of japonica. Synteny between rice and other cereals using an integrated maize physical map and wheat genetic map was strikingly high, further supporting the use of rice and, in particular, chromosome 3, as a model for comparative studies among the cereals.
        
Title: The map-based sequence of the rice genome. Matsumo T, Sasaki T Ref: Nature, 436:793, 2005 : PubMed
The Rice Annotation Project Database (RAP-DB) was created to provide the genome sequence assembly of the International Rice Genome Sequencing Project (IRGSP), manually curated annotation of the sequence, and other genomics information that could be useful for comprehensive understanding of the rice biology. Since the last publication of the RAP-DB, the IRGSP genome has been revised and reassembled. In addition, a large number of rice-expressed sequence tags have been released, and functional genomics resources have been produced worldwide. Thus, we have thoroughly updated our genome annotation by manual curation of all the functional descriptions of rice genes. The latest version of the RAP-DB contains a variety of annotation data as follows: clone positions, structures and functions of 31 439 genes validated by cDNAs, RNA genes detected by massively parallel signature sequencing (MPSS) technology and sequence similarity, flanking sequences of mutant lines, transposable elements, etc. Other annotation data such as Gnomon can be displayed along with those of RAP for comparison. We have also developed a new keyword search system to allow the user to access useful information. The RAP-DB is available at: http://rapdb.dna.affrc.go.jp/ and http://rapdb.lab.nig.ac.jp/.
Rice (Oryza sativa L.) chromosome 3 is evolutionarily conserved across the cultivated cereals and shares large blocks of synteny with maize and sorghum, which diverged from rice more than 50 million years ago. To begin to completely understand this chromosome, we sequenced, finished, and annotated 36.1 Mb ( approximately 97%) from O. sativa subsp. japonica cv Nipponbare. Annotation features of the chromosome include 5915 genes, of which 913 are related to transposable elements. A putative function could be assigned to 3064 genes, with another 757 genes annotated as expressed, leaving 2094 that encode hypothetical proteins. Similarity searches against the proteome of Arabidopsis thaliana revealed putative homologs for 67% of the chromosome 3 proteins. Further searches of a nonredundant amino acid database, the Pfam domain database, plant Expressed Sequence Tags, and genomic assemblies from sorghum and maize revealed only 853 nontransposable element related proteins from chromosome 3 that lacked similarity to other known sequences. Interestingly, 426 of these have a paralog within the rice genome. A comparative physical map of the wild progenitor species, Oryza nivara, with japonica chromosome 3 revealed a high degree of sequence identity and synteny between these two species, which diverged approximately 10,000 years ago. Although no major rearrangements were detected, the deduced size of the O. nivara chromosome 3 was 21% smaller than that of japonica. Synteny between rice and other cereals using an integrated maize physical map and wheat genetic map was strikingly high, further supporting the use of rice and, in particular, chromosome 3, as a model for comparative studies among the cereals.
        
Title: The map-based sequence of the rice genome. Matsumo T, Sasaki T Ref: Nature, 436:793, 2005 : PubMed
We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000-40,000. Only 2%-3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family.
We collected and completely sequenced 28,469 full-length complementary DNA clones from Oryza sativa L. ssp. japonica cv. Nipponbare. Through homology searches of publicly available sequence data, we assigned tentative protein functions to 21,596 clones (75.86%). Mapping of the cDNA clones to genomic DNA revealed that there are 19,000 to 20,500 transcription units in the rice genome. Protein informatics analysis against the InterPro database revealed the existence of proteins presented in rice but not in Arabidopsis. Sixty-four percent of our cDNAs are homologous to Arabidopsis proteins.