(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Viridiplantae: NE > Streptophyta: NE > Streptophytina: NE > Embryophyta: NE > Tracheophyta: NE > Euphyllophyta: NE > Spermatophyta: NE > Acrogymnospermae: NE > Pinidae: NE > Pinales: NE > Pinaceae: NE > Picea: NE > Picea sitchensis: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Pinus contorta: N, E.
Pinus sylvestris: N, E.
Pinus lambertiana: N, E.
Pinus strobiformis: N, E.
Pinus resinosa: N, E.
Pinus peuce: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MDKIQHKQVDVGGLNLHVAEIGSGPTVLLLHGFPEIWYSWRHQMIALAEA GFHAIAPDFRGYGLSDQPSEPEKAVYYDLVEDMAGLLDALGIEKVFVVGK DFGAAVAYYFDLCHPDRVKGIVTLGIPYMKPGGKGNWDSAPKGLYFLHWQ EPGRGLADLGRFDVKTVVRNIYTLFSSSELPVAEDGKEVMDLYNPSIPLP PWFSEDDLQMYSSLYEKSGFVFPIQVPYLCSKRDIGGLANFKDRTIQAPC LLILGTKDYFLKFPGVEYYVNSEMLKSCVPNLEIKFFPEGSHFVQEQFPE EVNKLLLGFLNQHQ
In this study, we investigate natural selection in a pine phylogeny. DNA sequences from 18 nuclear genes were used to construct a very well-supported species tree including 10 pine species. This tree is in complete agreement with a previously reported supertree constructed from morphological and molecular data, but there are discrepancies with previous chloroplast phylogenies within the section Pinus. A significant difference in evolutionary rate between Picea and Pinus was found, which could potentially indicate a lower mutation rate in Picea, but other scenarios are also possible. Several approaches were used to study selection patterns in a set of 21 nuclear genes in pines and in some cases in Picea and Pseudotsuga. The overall pattern suggests efficient purifying selection resulting in low branch-specific d(n)/d(s) ratios with an average of 0.22, which is similar to other higher plants. Evidence for purifying selection was common and found on at least 55% of the branches. Evidence of positive selection at several sites was found in a phytocyanin homolog and significant differences in d(n)/d(s) among the branches in the gene tree in dehydrin 1. Several genes suitable for further phylogenetic analysis at various levels of divergence were identified.
        
Title: Patterns of divergence among conifer ESTs and polymorphism in Pinus sylvestris identify putative selective sweeps Palme AE, Wright M, Savolainen O Ref: Molecular Biology Evolution, 25:2567, 2008 : PubMed
Finding genes that are under positive selection is a difficult task, especially in non-model organisms. Here, we have analyzed expressed sequence tag (EST) data from 4 species (Pinus pinaster, Pinus taeda, Picea glauca, and Pseudotsuga menziesii) to investigate selection patterns during their evolution and to identify genes likely to be under positive selection. To confirm selection, population samples of these genes have been sequenced in Pinus sylvestris, a species that was not included in the EST data set. The estimates of branch-specific Ka/Ks (nonsynonymous/synonymous substitution rates) across all genes in the EST data set were similar or smaller than estimates from other higher plant species. There was no evidence for the traditional indication of positive selection, Ka/Ks above 1. However, several lines of evidence based on polymorphism patterns suggest that genes with high Ka/Ks (0.20-0.52) in the EST data set are in fact more affected by positive selection in P. sylvestris than genes with low Ka/Ks (0.01-0.04). The high Ka/Ks genes have a lower level of polymorphism and more negative Tajima's D than the low Ka/Ks genes. Further, in the high Ka/Ks group, the Hudson-Kreitman-Aguade test is significant. This suggests that the EST data set is a good starting point for finding genes under positive selection in conifers and that even moderate Ka/Ks values could be indicative of selection. A group of 5 genes with high Ka/Ks collectively show evidence for positive selection within P. sylvestris.
BACKGROUND: Members of the pine family (Pinaceae), especially species of spruce (Picea spp.) and pine (Pinus spp.), dominate many of the world's temperate and boreal forests. These conifer forests are of critical importance for global ecosystem stability and biodiversity. They also provide the majority of the world's wood and fiber supply and serve as a renewable resource for other industrial biomaterials. In contrast to angiosperms, functional and comparative genomics research on conifers, or other gymnosperms, is limited by the lack of a relevant reference genome sequence. Sequence-finished full-length (FL)cDNAs and large collections of expressed sequence tags (ESTs) are essential for gene discovery, functional genomics, and for future efforts of conifer genome annotation. RESULTS: As part of a conifer genomics program to characterize defense against insects and adaptation to local environments, and to discover genes for the production of biomaterials, we developed 20 standard, normalized or full-length enriched cDNA libraries from Sitka spruce (P. sitchensis), white spruce (P. glauca), and interior spruce (P. glauca-engelmannii complex). We sequenced and analyzed 206,875 3'- or 5'-end ESTs from these libraries, and developed a resource of 6,464 high-quality sequence-finished FLcDNAs from Sitka spruce. Clustering and assembly of 147,146 3'-end ESTs resulted in 19,941 contigs and 26,804 singletons, representing 46,745 putative unique transcripts (PUTs). The 6,464 FLcDNAs were all obtained from a single Sitka spruce genotype and represent 5,718 PUTs. CONCLUSION: This paper provides detailed annotation and quality assessment of a large EST and FLcDNA resource for spruce. The 6,464 Sitka spruce FLcDNAs represent the third largest sequence-verified FLcDNA resource for any plant species, behind only rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), and the only substantial FLcDNA resource for a gymnosperm. Our emphasis on capturing FLcDNAs and ESTs from cDNA libraries representing herbivore-, wound- or elicitor-treated induced spruce tissues, along with incorporating normalization to capture rare transcripts, resulted in a rich resource for functional genomics and proteomics studies. Sequence comparisons against five plant genomes and the non-redundant GenBank protein database revealed that a substantial number of spruce transcripts have no obvious similarity to known angiosperm gene sequences. Opportunities for future applications of the sequence and clone resources for comparative and functional genomics are discussed.