(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Gammaproteobacteria: NE > Pseudomonadales: NE > Pseudomonadaceae: NE > Pseudomonas: NE > Pseudomonas fluorescens group: NE > Pseudomonas fluorescens: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Pseudomonas fluorescens SBW25: N, E.
Pseudomonas fluorescens WH6: N, E.
Pseudomonas fluorescens NCIMB 11764: N, E.
Pseudomonas fluorescens F113: N, E.
Pseudomonas fluorescens A506: N, E.
Pseudomonas fluorescens SS101: N, E.
Pseudomonas fluorescens Q2-87: N, E.
Pseudomonas fluorescens R124: N, E.
Pseudomonas fluorescens BRIP34879: N, E.
Pseudomonas fluorescens EGD-AQ6: N, E.
Pseudomonas fluorescens BBc6R8: N, E.
Pseudomonas fluorescens FH5: N, E.
Pseudomonas fluorescens HK44: N, E.
Pseudomonas fluorescens LMG 5329: N, E.
Pseudomonas fluorescens ABAC62: N, E.
Pseudomonas fluorescens ICMP 11288: N, E.
Pseudomonas fluorescens Q8r1-96: N, E.
Pseudomonas fluorescens Pf0-1: N, E.
Molecular evidence
Database
No mutation 6 structures(e.g. : 1VA4, 3HEA, 3HI4... more)(less) 1VA4: Pseudomonas fluorescens aryl esterase, 3HEA: The L29P/L124I mutation of Pseudomonas fluorescens esterase, 3HI4: Switching catalysis from hydrolysis to perhydrolysis in P. fluorescens esterase, 3IA2: Pseudomonas fluorescens esterase complexed to the R-enantiomer of a sulfonate transition state analog, 3T4U: L29I Mutation in an Aryl Esterase from Pseudomonas fluorescens Leads to Unique Peptide Flip and Increased Activity 1, 3T52: L29I Mutation in an Aryl Esterase from Pseudomonas fluorescens Leads to Unique Peptide Flip and Increased Activity 2 No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSTFVAKDGTQIYFKDWGSGKPVLFSHGWLLDADMWEYQMEYLSSRGYRT IAFDRRGFGRSDQPWTGNDYDTFADDIAQLIEHLDLKEVTLVGFSMGGGD VARYIARHGSARVAGLVLLGAVTPLFGQKPDYPQGVPLDVFARFKTELLK DRAQFISDFNAPFYGINKGQVVSQGVQTQTLQIALLASLKATVDCVTAFA ETDFRPDMAKIDVPTLVIHGDGDQIVPFETTGKVAAELIKGAELKVYKDA PHGFAVTHAQQLNEDLLAFLKR
Some serine hydrolases also catalyze a promiscuous reaction--reversible perhydrolysis of carboxylic acids to make peroxycarboxylic acids. Five X-ray crystal structures of these carboxylic acid perhydrolases show a proline in the oxyanion loop. Here, we test whether this proline is essential for high perhydrolysis activity using Pseudomonas fluorescens esterase (PFE). The L29P variant of this esterase catalyzes perhydrolysis 43-fold faster (k(cat) comparison) than the wild type. Surprisingly, saturation mutagenesis at the 29 position of PFE identified six other amino acid substitutions that increase perhydrolysis of acetic acid at least fourfold over the wild type. The best variant, L29I PFE, catalyzed perhydrolysis 83-times faster (k(cat) comparison) than wild-type PFE and twice as fast as L29P PFE. Despite the different amino acid in the oxyanion loop, L29I PFE shows a similar selectivity for hydrogen peroxide over water as L29P PFE (beta(0)=170 vs. 160 M(-1)), and a similar fast formation of acetyl-enzyme (140 vs. 62 U mg(-1)). X-ray crystal structures of L29I PFE with and without bound acetate show an unusual mixture of two different oxyanion loop conformations. The type II beta-turn conformation resembles the wild-type structure and is unlikely to increase perhydrolysis, but the type I beta-turn conformation creates a binding site for a second acetate. Modeling suggests that a previously proposed mechanism for L29P PFE can be extended to include L29I PFE, so that an acetate accepts a hydrogen bond to promote faster formation of the acetyl-enzyme.
Acyl transfer is a key reaction in biosynthesis, including synthesis of antibiotics and polyesters. Although researchers have long recognized the similar protein fold and catalytic machinery in acyltransferases and hydrolases, the molecular basis for the different reactivity has been a long-standing mystery. By comparison of X-ray structures, we identified a different oxyanion-loop orientation in the active site. In esterases/lipases a carbonyl oxygen points toward the active site, whereas in acyltransferases a NH of the main-chain amide points toward the active site. Amino acid sequence comparisons alone cannot identify such a difference in the main-chain orientation. To identify how this difference might change the reaction mechanism, we solved the X-ray crystal structure of Pseudomonas fluorescens esterase containing a sulfonate transition-state analogue bound to the active-site serine. This structure mimics the transition state for the attack of water on the acyl-enzyme and shows a bridging water molecule between the carbonyl oxygen mentioned above and the sulfonyl oxygen that mimics the attacking water. A possible mechanistic role for this bridging water molecule is to position and activate the attacking water molecule in hydrolases, but to deactivate the attacking water molecule in acyl transferases.
Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of epsilon-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k(cat), but K(m) also increased so the specificity constant, k(cat)/K(m), remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of epsilon-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access for larger alcohol moieties but binds epsilon-caprolactone more tightly. These results are consistent with the natural function of perhydrolases being either hydrolysis of peroxycarboxylic acids or hydrolysis of lactones.
With advances in protein structure predictions, the number of available high-quality structures has increased dramatically. In light of these advances, structure-based enzyme engineering is expected to become increasingly important for optimizing biocatalysts for industrial processes. Here, we present AsiteDesign, a Monte Carlo-based protocol for structure-based engineering of active sites. AsiteDesign provides a framework for introducing new catalytic residues in a given binding pocket to either create a new catalytic activity or alter the existing one. AsiteDesign is implemented using pyRosetta and incorporates enhanced sampling techniques to efficiently explore the search space. The protocol was tested by designing an alternative catalytic triad in the active site of Pseudomonas fluorescens esterase (PFE). The designed variant was experimentally verified to be active, demonstrating that AsiteDesign can find alternative catalytic triads. Additionally, the AsiteDesign protocol was employed to enhance the hydrolysis of a bulky chiral substrate (1-phenyl-2-pentyl acetate) by PFE. The experimental verification of the designed variants demonstrated that F158L/F198A and F125A/F158L mutations increased the hydrolysis of 1-phenyl-2-pentyl acetate from 8.9 to 66.7 and 23.4%, respectively, and reversed the enantioselectivity of the enzyme from (R) to (S)-enantiopreference, with 32 and 55% enantiomeric excess (ee), respectively.
Some serine hydrolases also catalyze a promiscuous reaction--reversible perhydrolysis of carboxylic acids to make peroxycarboxylic acids. Five X-ray crystal structures of these carboxylic acid perhydrolases show a proline in the oxyanion loop. Here, we test whether this proline is essential for high perhydrolysis activity using Pseudomonas fluorescens esterase (PFE). The L29P variant of this esterase catalyzes perhydrolysis 43-fold faster (k(cat) comparison) than the wild type. Surprisingly, saturation mutagenesis at the 29 position of PFE identified six other amino acid substitutions that increase perhydrolysis of acetic acid at least fourfold over the wild type. The best variant, L29I PFE, catalyzed perhydrolysis 83-times faster (k(cat) comparison) than wild-type PFE and twice as fast as L29P PFE. Despite the different amino acid in the oxyanion loop, L29I PFE shows a similar selectivity for hydrogen peroxide over water as L29P PFE (beta(0)=170 vs. 160 M(-1)), and a similar fast formation of acetyl-enzyme (140 vs. 62 U mg(-1)). X-ray crystal structures of L29I PFE with and without bound acetate show an unusual mixture of two different oxyanion loop conformations. The type II beta-turn conformation resembles the wild-type structure and is unlikely to increase perhydrolysis, but the type I beta-turn conformation creates a binding site for a second acetate. Modeling suggests that a previously proposed mechanism for L29P PFE can be extended to include L29I PFE, so that an acetate accepts a hydrogen bond to promote faster formation of the acetyl-enzyme.
Acyl transfer is a key reaction in biosynthesis, including synthesis of antibiotics and polyesters. Although researchers have long recognized the similar protein fold and catalytic machinery in acyltransferases and hydrolases, the molecular basis for the different reactivity has been a long-standing mystery. By comparison of X-ray structures, we identified a different oxyanion-loop orientation in the active site. In esterases/lipases a carbonyl oxygen points toward the active site, whereas in acyltransferases a NH of the main-chain amide points toward the active site. Amino acid sequence comparisons alone cannot identify such a difference in the main-chain orientation. To identify how this difference might change the reaction mechanism, we solved the X-ray crystal structure of Pseudomonas fluorescens esterase containing a sulfonate transition-state analogue bound to the active-site serine. This structure mimics the transition state for the attack of water on the acyl-enzyme and shows a bridging water molecule between the carbonyl oxygen mentioned above and the sulfonyl oxygen that mimics the attacking water. A possible mechanistic role for this bridging water molecule is to position and activate the attacking water molecule in hydrolases, but to deactivate the attacking water molecule in acyl transferases.
Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of epsilon-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k(cat), but K(m) also increased so the specificity constant, k(cat)/K(m), remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of epsilon-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access for larger alcohol moieties but binds epsilon-caprolactone more tightly. These results are consistent with the natural function of perhydrolases being either hydrolysis of peroxycarboxylic acids or hydrolysis of lactones.
Entering the fold: A common structural motif in hydrolytic enzymes is the alpha,beta-hydrolase fold. The interconversion of one enzyme into another by introduction of mechanistically important residues is not enough; only substitution of a loop allows epoxide hydrolase activity in the esterase scaffold to be formed (see picture; structure comparison of epoxide hydrolases (green) with the esterase (orange)). The result is an enantioselective chimeric enzyme.
Four hydrophobic and bulky amino acid residues (F126, F144, F159, and I225) were identified to form a bottleneck guarding the entrance to the active site of an esterase from Pseudomonas fluorescens (PFE I). Hence, a range of nonpolar amino acids were introduced into PFE I to broaden the substrate range and to increase enantioselectivity while preserving the hydrophobicity of the tunnel. First, single variants were created and then the most enantioselective ones were combined to find cooperative effects. This resulted in several mutants, which showed substantially enhanced enantioselectivity; for instance, in the kinetic resolution of 1-phenyl-1-propyl acetate, with which the wild type only showed E=1.2, two mutants gave E>46. For 1-phenyl-1-ethyl acetate enantioselectivity increased from approximately 50 to >100 for all mutants studied. Furthermore, higher conversions could be found at shorter reaction times; this indicates that the mutations not only enhanced selectivity, but that also the entrance into the active site was indeed facilitated by these mutations. The experimental results could be explained by computer modeling.
BACKGROUND: Pseudomonas fluorescens are common soil bacteria that can improve plant health through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P. fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen provided insight into genes used by P. fluorescens in its natural environment and an improved understanding of the ecological significance of diversity within this species. RESULTS: Comparisons of three P. fluorescens genomes (SBW25, Pf0-1, Pf-5) revealed considerable divergence: 61% of genes are shared, the majority located near the replication origin. Phylogenetic and average amino acid identity analyses showed a low overall relationship. A functional screen of SBW25 defined 125 plant-induced genes including a range of functions specific to the plant environment. Orthologues of 83 of these exist in Pf0-1 and Pf-5, with 73 shared by both strains. The P. fluorescens genomes carry numerous complex repetitive DNA sequences, some resembling Miniature Inverted-repeat Transposable Elements (MITEs). In SBW25, repeat density and distribution revealed 'repeat deserts' lacking repeats, covering approximately 40% of the genome. CONCLUSIONS: P. fluorescens genomes are highly diverse. Strain-specific regions around the replication terminus suggest genome compartmentalization. The genomic heterogeneity among the three strains is reminiscent of a species complex rather than a single species. That 42% of plant-inducible genes were not shared by all strains reinforces this conclusion and shows that ecological success requires specialized and core functions. The diversity also indicates the significant size of genetic information within the Pseudomonas pan genome.
Protein engineering is currently performed either by rational design, focusing in most cases on only a few positions modified by site-directed mutagenesis, or by directed molecular evolution, in which the entire protein-encoding gene is subjected to random mutagenesis followed by screening or selection of desired phenotypes. A novel alternative is focused directed evolution, in which only fragments of a protein are randomised while the overall scaffold of a protein remains unchanged. For this purpose, we developed a PCR technique using long, spiked oligonucleotides, which allow randomising of one or several cassettes in any given position of a gene. This method allows over 95% incorporation of mutations independently of their position within the gene, yielding sufficient product to generate large libraries, and the possibility of simultaneously randomising more than one locus at a time, thus originating recombination. The high efficiency of this method was verified by creating focused mutant libraries of Pseudomonas fluorescens esterase I (PFEI), screening for altered substrate selectivity and validating against libraries created by error-prone PCR. This led to the identification of two mutants within the OSCARR library with a 10-fold higher catalytic efficiency towards p-nitrophenyl dodecanoate. These PFEI variants were also modelled in order to explain the observed effects.
The structure of PFE, an aryl esterase from Pseudomonas fluorescens, has been solved to a resolution of 1.8 A by X-ray diffraction and shows a characteristic alpha/beta-hydrolase fold. In addition to catalyzing the hydrolysis of esters in vitro, PFE also shows low bromoperoxidase activity. PFE shows highest structural similarity, including the active-site environment, to a family of non-heme bacterial haloperoxidases, with an r.m.s. deviation in 271 C(alpha) atoms between PFE and its five closest structural neighbors averaging 0.8 A. PFE has far less similarity (r.m.s. deviation in 218 C(alpha) atoms of 5.0 A) to P. fluorescens carboxyl esterase. PFE favors activated esters with small acyl groups, such as phenyl acetate. The X-ray structure of PFE reveals a significantly occluded active site. In addition, several residues, including Trp28 and Met95, limit the size of the acyl-binding pocket, explaining its preference for small acyl groups.
        
Title: Mutations in distant residues moderately increase the enantioselectivity of Pseudomonas fluorescens esterase towards methyl 3bromo-2-methylpropanoate and ethyl 3phenylbutyrate Horsman GP, Liu AM, Henke E, Bornscheuer UT, Kazlauskas RJ Ref: Chemistry, 9:1933, 2003 : PubMed
Directed evolution combined with saturation mutagenesis identified six different point mutations that each moderately increases the enantioselectivity of an esterase from Pseudomonas fluorescens (PFE) towards either of two chiral synthons. Directed evolution identified a Thr230Ile mutation that increased the enantioselectivity from 12 to 19 towards methyl (S)-3-bromo-2-methylpropanoate. Saturation mutagenesis at Thr230 identified another mutant, Thr230Pro, with higher-than-wild-type enantioselectivity (E=17). Previous directed evolution identified mutants Asp158Asn and Leu181Gln that increased the enantioselectivity from 3.5 to 5.8 and 6.6, respectively, towards ethyl (R)-3-phenylbutyrate. In this work, saturation mutagenesis identified other mutations that further increase the enantioselectivity to 12 (Asp158Leu) and 10 (Leu181Ser). A homology model of PFE indicates that all mutations lie outside the active site, 12-14 A from the substrate and suggests how the distant mutations might indirectly change the substrate-binding site. Since proteins contain many more residues far from the active site than close to the active site, random mutagenesis is strongly biased in favor of distant mutations. Directed evolution rarely screens all mutations, so it usually finds the distant mutations because they are more common, but probably not the most effective.
        
Title: Directed evolution of an esterase from Pseudomonas fluorescens. Random mutagenesis by error-prone PCR or a mutator strain and identification of mutants showing enhanced enantioselectivity by a resorufin-based fluorescence assay Henke E, Bornscheuer UT Ref: Biol Chem, 380:1029, 1999 : PubMed
The gene encoding an esterase from Pseudomonas fluorescens (PFE) was subjected to random mutagenesis by error-prone PCR or by using the mutator strain Epicurian coli XL1-Red. Enzyme libraries were then created in microtiter plates by expression of PFE-variants in E. coli. These were assayed for improved enantioselectivity in a Beckman robot system using optically pure (R)- or (S)-3-phenylbutyric acid resorufin esters, resulting in the identification of several mutants showing up to almost two-fold enantioselectivity (E(true) = 5.2 to 6.6) compared to wild-type PFE (E(true) = 3.5).
        
Title: Enantioselectivity of a recombinant esterase from Pseudomonas fluorescens towards alcohols and carboxylic acids Krebsfanger N, Schierholz K, Bornscheuer UT Ref: J Biotechnol, 60:105, 1998 : PubMed
A recombinant esterase from Pseudomonas fluorescens (PFE) was produced from E. coli cultures and the enantioselectivity towards a series of racemic substrates was investigated. PFE exhibited high rate and enantioselectivity in the acylation of alpha-phenyl ethanol with vinyl acetate in toluene (E > 100) and the hydrolysis of the corresponding acetate in phosphate buffer (E = 58). In sharp contrast, extremely low enantioselectivity (E from 1.1 to 7) was found for the acylation of a series of 1,2-O-protected glycerol derivatives and the hydrolysis of 3-phenylbutyric acid methylester. Almost no reaction occurred with alpha-phenyl propanol and its acetate and 2-phenylbutyric acid ethylester.
        
Title: A bacterial esterase is homologous with non-haem haloperoxidases and displays brominating activity Pelletier I, Altenbuchner J Ref: Microbiology, 141:459, 1995 : PubMed
Screening GenBank indicated that an esterase from Pseudomonas fluorescens had high sequence similarity with bacterial non-haem haloperoxides. However, this homology was limited to two distinct domains of the published esterase sequence. As errors in the published sequence were suspected, the esterase gene was sequenced again. The revised sequence displayed between 40 and 50% identical amino acids with the haloperoxidases, but distributed along the whole sequence. In addition to the structural homologies with haloperoxidases, the esterase also displayed functional homology. The recombinant esterase, purified from Escherichia coli cells, was capable of both ester hydrolysis and halogenation, as detected in situ by the formation of bromophenol blue or spectrophotometrically by the bromination of monochlorodimedon. The esterase is thus a bifunctional enzyme. The sequence analysis and the biochemical investigations show that the esterase belongs to the haloperoxidase family. It also possessed, however, a typical feature of serine-hydrolases, namely the consensus motif Gly-X-Ser-X-Gly around the active serine of the catalytic triad. By alignment of the esterase with different serine-hydrolase sequences, it was possible to identify the other two residues of the triad. The triad comprised the residues Ser95, Asp223 and His252. Interestingly, a structurally equivalent catalytic triad was also identified in the sequences of all bacterial non-haem haloperoxidases, in highly conserved domains. The presence of a catalytic triad in haloperoxidases is expected to be important in the mechanism of halogenation.
        
Title: Cloning and nucleotide sequence of an esterase gene from Pseudomonas fluorescens and expression of the gene in Escherichia coli Choi KD, Jeohn GH, Rhee JS, Yoo OJ Ref: Agric and Biological Chemistry, 54:2039, 1990 : PubMed
A gene coding for a novel esterase of Pseudomonas fluorescens was cloned in this study. DNA sequencing showed that the open reading frame is comprised of 708 nucleotides. The coding sequence of the gene is preceded by a potential Shine-Dalgarno sequence and by a promoter-like structure. Following the stop codon a structure reminiscent of the E. coli rho-independent terminator is present. The enzyme expressed in an E. coli clone was mostly in the periplasmic space, released to the outside of the cell by osmotic shock and purified to homogeneity by QAE-Sephadex A-50 and DEAE-Sepharose columns. The native form of the enzyme consisted of two identical subunits, each with a molecular weight of 27,000. By studying the properties and substrate specificity, the enzyme was classified as an arylesterase (EC 3.1.1.2).