(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Gammaproteobacteria: NE > Pseudomonadales: NE > Pseudomonadaceae: NE > Pseudomonas: NE > Pseudomonas putida group: NE > Pseudomonas putida: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Pseudomonas stutzeri: N, E.
Pseudomonas stutzeri ATCC 14405 = CCUG 16156: N, E.
Pseudomonas stutzeri CCUG 29243: N, E.
Pseudomonas stutzeri TS44: N, E.
Pseudomonas stutzeri DSM 10701: N, E.
Pseudomonas stutzeri RCH2: N, E.
Pseudomonas stutzeri NF13: N, E.
Pseudomonas stutzeri MF28: N, E.
Pseudomonas stutzeri KOS6: N, E.
Pseudomonas stutzeri A1501: N, E.
Pseudomonas stutzeri ATCC 17588 = LMG 11199: N, E.
Pseudomonas stutzeri B1SMN1: N, E.
Pseudomonas stutzeri DSM 4166: N, E.
Pseudomonas azelaica: N, E.
Pseudomonas nitroreducens: N, E.
Pseudomonas pseudoalcaligenes: N, E.
Pseudomonas pseudoalcaligenes CECT 5344: N, E.
Pseudomonas pseudoalcaligenes KF707: N, E.
Pseudomonas pseudoalcaligenes AD6: N, E.
Pseudomonas pseudoalcaligenes KF707 = NBRC 110670: N, E.
Pseudomonas mendocina: N, E.
Pseudomonas mendocina EGD-AQ5: N, E.
Pseudomonas mendocina ymp: N, E.
Pseudomonas mendocina DLHK: N, E.
Pseudomonas mendocina NK-01: N, E.
Pseudomonas mendocina S5.2: N, E.
Pseudomonas putida KT2440: N, E.
Pseudomonas putida W619: N, E.
Pseudomonas putida DOT-T1E: N, E.
Pseudomonas putida F1: N, E.
Pseudomonas putida TRO1: N, E.
Pseudomonas putida S11: N, E.
Pseudomonas putida CSV86: N, E.
Pseudomonas putida S610: N, E.
Pseudomonas putida S12: N, E.
Pseudomonas putida S13.1.2: N, E.
Pseudomonas putida KG-4: N, E.
Pseudomonas putida LF54: N, E.
Pseudomonas putida BIRD-1: N, E.
Pseudomonas putida GB-1: N, E.
Pseudomonas sp. ND6: N, E.
Pseudomonas putida H8234: N, E.
Pseudomonas putida HB3267: N, E.
Pseudomonas putida SJ3: N, E.
Pseudomonas putida LS46: N, E.
Pseudomonas putida NBRC 14164: N, E.
Pseudomonas putida S16: N, E.
Pseudomonas putida ND6: N, E.
Pseudomonas putida B6-2: N, E.
Pseudomonas putida SJTE-1: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MRPEIAVLDIQGQYRVYTEFYRADAAENTIILINGSLATTASFAQTVRNL HPQFNVVLFDQPYSGKSKPHNRQERLISKETEAHILLELIEHFQADHVMS FSWGGASTLLALAHQPRYVKKAVVSSFSPVINEPMRDYLDRGCQYLAACD RYQVGNLVNDTIGKHLPSLFKRFNYRHVSSLDSHEYAQMHFHINQVLEHD LERALQGARNINIPVLFINGERDEYTTVEDARQFSKHVGRSQFSVIRDAG HFLDMENKTACENTRNVMLGFLKPTVREPRQRYQPVQQGQHAFAI
Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.
        
Title: A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The PHAG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase Rehm BH, Kruger N, Steinbuchel A Ref: Journal of Biological Chemistry, 273:24044, 1998 : PubMed
To investigate the metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid (PHA) synthesis, we isolated mutants of Pseudomonas putida KT2440 deficient in this metabolic route. The gene phaG was cloned by phenotypic complementation of these mutants; it encoded a protein of 295 amino acids with a molecular mass of 33,876 Da, and the amino acid sequence exhibited 44% amino acid identity to the primary structure of the rhlA gene product, which is involved in the rhamnolipid biosynthesis in Pseudomonas aeruginosa PG201. S1 nuclease protection assay identified the transcriptional start site 239 base pairs upstream of the putative translational start codon. Transcriptional induction of phaG was observed when gluconate was provided, and PHA synthesis occurred from this carbon source. No complementation of the rhlA mutant P. aeruginosa UO299-harboring plasmid pBHR81, expressing phaG gene under lac promoter control, was obtained. Heterologous expression of phaG in Pseudomonas oleovorans, which is not capable of PHA synthesis from gluconate, enabled PHA synthesis on gluconate as the carbon source. Native recombinant PhaG was purified by native polyacrylamide gel electrophoresis from P. oleovorans-harboring plasmid pBHR81. It catalyzes the transfer of the acyl moiety from in vitro synthesized 3-hydroxydecanoyl-CoA to acyl carrier protein, indicating that PhaG exhibits a 3-hydroxyacyl-CoA-acyl carrier protein transferase activity.