(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Gammaproteobacteria: NE > Pseudomonadales: NE > Pseudomonadaceae: NE > Pseudomonas: NE > Pseudomonas putida group: NE > Pseudomonas putida: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Pseudomonas putida KT2440: N, E.
Pseudomonas putida F1: N, E.
Pseudomonas putida GB-1: N, E.
Pseudomonas putida S16: N, E.
Pseudomonas putida W619: N, E.
Pseudomonas putida BIRD-1: N, E.
Pseudomonas putida DOT-T1E: N, E.
Pseudomonas sp. ND6: N, E.
Pseudomonas putida ND6: N, E.
Pseudomonas putida HB3267: N, E.
Pseudomonas putida LS46: N, E.
Pseudomonas putida TRO1: N, E.
Pseudomonas putida H8234: N, E.
Pseudomonas putida NBRC 14164: N, E.
Pseudomonas putida LF54: N, E.
Pseudomonas putida SJ3: N, E.
Pseudomonas putida S12: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MINGQSAGIDGDQWAKVANVPGLRCDPPRVAGQDDYKGCLILAHGAGAPM DSGFMDEMAQRLAALGVAVVRFEFPYMAERRVTGGKRPPNPQKVLLECWR EVYRQVRPLVAGKLAVGGKSMGGRMASLLADELGADALVCLGYPFYAVGK PEKPRVEHLAELKTPTLIVQGERDALGNREAVAGYALSPAIEVSWLVAGD HDLKPLKASGFSHEQHLQAAAERVADFLKD
We report the complete sequence of the 5.7-Mbp genome of Pseudomonas putida BIRD-1, a metabolically versatile plant growth-promoting rhizobacterium that is highly tolerant to desiccation and capable of solubilizing inorganic phosphate and iron and of synthesizing phytohormones that stimulate seed germination and plant growth.
        
Title: Complete genome sequence of the nicotine-degrading Pseudomonas putida strain S16 Yu H, Tang H, Wang L, Yao Y, Wu G, Xu P Ref: Journal of Bacteriology, 193:5541, 2011 : PubMed
Pseudomonas putida S16 is an efficient degrader of nicotine. The complete genome of strain S16 (5,984,790 bp in length) includes genes related to catabolism of aromatic and heterocyclic compounds. The genes of enzymes in the core genome and a genomic island encode the proteins responsible for nicotine catabolism.
Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.
Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267) kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ss-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts.
Pseudomonas putida has attracted much interest for its environmental, industrial, biotechnological, and clinical importance. Here, we report the complete genome sequence of the type strain P. putida NBRC 14164. This genome sequence will assist to further elucidate the molecular mechanisms of the characteristic traits among strains belonging to the species P. putida.
We report the complete genome sequence of Pseudomonas putida strain H8234, which was isolated from a hospital patient presenting with bacteremia. This strain has a single chromosome (6,870,827 bp) that contains 6,305 open reading frames. The strain is not a pathogen but exhibits multidrug resistance associated with 40 genomic islands.
We describe the draft genome sequence of Pseudomonas putida strain LS46, a novel isolate that synthesizes medium-chain-length polyhydroxyalkanoates. The draft genome of P. putida LS46 consists of approximately 5.86 million bp, with a G+C content of 61.69%. A total of 5,316 annotated genes and 5,219 coding sequences (CDS) were identified.
Pseudomonas putida DOT-T1E is an organic solvent tolerant strain capable of degrading aromatic hydrocarbons. Here we report the DOT-T1E genomic sequence (6,394,153 bp) and its metabolic atlas based on the classification of enzyme activities. The genome encodes for at least 1751 enzymatic reactions that account for the known pattern of C, N, P and S utilization by this strain. Based on the potential of this strain to thrive in the presence of organic solvents and the subclasses of enzymes encoded in the genome, its metabolic map can be drawn and a number of potential biotransformation reactions can be deduced. This information may prove useful for adapting desired reactions to create value-added products. This bioengineering potential may be realized via direct transformation of substrates, or may require genetic engineering to block an existing pathway, or to re-organize operons and genes, as well as possibly requiring the recruitment of enzymes from other sources to achieve the desired transformation.
        
Title: Dechlorination of chloral hydrate is influenced by the biofilm adhesin protein LapA in Pseudomonas putida LF54 Zhang W, Huhe, Pan Y, Toyofuku M, Nomura N, Nakajima T, Uchiyama H Ref: Applied Environmental Microbiology, 79:4166, 2013 : PubMed
LapA is the largest surface adhesion protein of Pseudomonas putida that initiates biofilm formation. Here, by using transposon insertion mutagenesis and a conditional lapA mutant, we demonstrate for the first time that LapA influences chloral hydrate (CH) dechlorination in P. putida LF54.
        
Title: Complete genome sequence of the naphthalene-degrading Pseudomonas putida strain ND6 Li S, Zhao H, Li Y, Niu S, Cai B Ref: Journal of Bacteriology, 194:5154, 2012 : PubMed
Pseudomonas putida strain ND6 is an efficient naphthalene-degrading bacterium. The complete genome of strain ND6 was sequenced and annotated. The genes encoding the enzymes involved in catechol degradation by the ortho-cleavage pathway were found in the chromosomal sequence, which indicated that strain ND6 is able to metabolize naphthalene by the catechol meta- and ortho-cleavage pathways.
        
Title: Kinetics of medium-chain-length polyhydroxyalkanoate production by a novel isolate of Pseudomonas putida LS46 Sharma PK, Fu J, Cicek N, Sparling R, Levin DB Ref: Can J Microbiol, 58:982, 2012 : PubMed
Six bacteria that synthesize medium-chain-length polyhydroxyalkanoates (mcl-PHAs) were isolated from sewage sludge and hog barn wash and identified as strains of Pseudomonas and Comamonas by 16S rDNA gene sequencing. One isolate, Pseudomonas putida LS46, showed good PHA production (22% of cell dry mass) in glucose medium, and it was selected for further studies. While it is closely related to other P. putida strains (F1, KT2440, BIRD-1, GB-1, S16, and W619), P. putida LS46 was genetically distinct from these other strains on the basis of nucleotide sequence analysis of the cpn60 gene hypervariable region. PHA production was detected as early as 12 h in both nitrogen-limited and nitrogen-excess conditions. The increase in PHA production after 48 h was higher in nitrogen-limited cultures than in nitrogen-excess cultures. Pseudomonas putida LS46 produced mcl-PHAs when cultured with glucose, glycerol, or C(6)-C(14) saturated fatty acids as carbon sources, and mcl-PHAs accounted for 56% of the cell dry mass when cells were batch cultured in medium containing 20 mmol/L octanoate. Although 3-hydroxydecanoate was the major mcl-PHA monomer (58.1-68.8 mol%) in P. putida LS46 cultured in glucose medium, 3-hydroxyoctanoate was the major monomer produced in octanoate medium (88 mol%).
We report the complete sequence of the 5.7-Mbp genome of Pseudomonas putida BIRD-1, a metabolically versatile plant growth-promoting rhizobacterium that is highly tolerant to desiccation and capable of solubilizing inorganic phosphate and iron and of synthesizing phytohormones that stimulate seed germination and plant growth.
        
Title: Complete genome sequence of the nicotine-degrading Pseudomonas putida strain S16 Yu H, Tang H, Wang L, Yao Y, Wu G, Xu P Ref: Journal of Bacteriology, 193:5541, 2011 : PubMed
Pseudomonas putida S16 is an efficient degrader of nicotine. The complete genome of strain S16 (5,984,790 bp in length) includes genes related to catabolism of aromatic and heterocyclic compounds. The genes of enzymes in the core genome and a genomic island encode the proteins responsible for nicotine catabolism.
Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.