(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Pezizomycotina: NE > leotiomyceta: NE > sordariomyceta: NE > Leotiomycetes: NE > Helotiales: NE > Dermateaceae: NE > Pyrenopeziza: NE > Pyrenopeziza brassicae: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MKVTALGNTLTGFGQALATTLGVDTTSSSPNCAEMMVVFARGTSEPGNVG LFSGPTFFDALEVMMGAGAVSVQGVEYGASIEGFLQGGDPAGSAAMAGIV EGTVQNCPNAKIVMSGYSQGGQLVHNAAAMLPAATMAKISSLVIFGDPND GKPIANADPSKVMVVCHPGHNICDGRDLVLVEHLTYSRDAVEAATFAAAR AKA
References
Title: Phylogenetic analysis and in-depth characterization of functionally and structurally diverse CE5 cutinases Novy V, Carneiro LV, Shin JH, Larsbrink J, Olsson L Ref: Journal of Biological Chemistry, :101302, 2021 : PubMed
Cutinases are esterases that release fatty acids from the apoplastic layer in plants. As they accept bulky and hydrophobic substrates, cutinases could be used in many applications, ranging from valorization of bark-rich side streams to plastic recycling. Advancement of these applications with cutinases as biocatalysts, however, requires deeper knowledge of the enzymes' biodiversity and structure-function relationships. Here, we mined over 3000 members from Carbohydrate Esterase family 5 (CE5) for putative cutinases and condensed it to 151 genes from known or putative lignocellulose-targeting organisms. The 151 genes were subjected to a phylogenetic analysis. While cutinases with available crystal structures were phylogenetically closely related, we selected nine phylogenic diverse cutinases for characterization. The nine selected cutinases were recombinantly produced and their kinetic activity was characterized against para-nitrophenol substrates esterified with consecutively longer alkyl chains (pNP-C(2) to C(16)). The investigated cutinases each had a unique activity fingerprint against tested pNP-substrates. The five enzymes with the highest activity on pNP-C(12) and C(16), indicative of activity on bulky hydrophobic compounds, were selected for in-depth kinetic and structure-function analysis. All five enzymes showed a decrease in k(cat) values with increasing substrate chain length, while K(M) values and binding energies (calculated from in silico docking analysis) improved. Two cutinases from Fusarium solani and Cryptococcus sp. exhibited outstandingly low K(M) values, resulting in high catalytic efficiencies towards pNP-C(16). Docking analysis suggested that different clades of the phylogenetic tree may harbor enzymes with different modes of substrate interaction, involving a solvent-exposed catalytic triad, a lipase-like lid, or a clamshell-like active site possibly formed by flexible loops.
        
Title: Molecular evidence that the extracellular cutinase Pbc1 is required for pathogenicity of Pyrenopeziza brassicae on oilseed rape Li D, Ashby AM, Johnstone K Ref: Mol Plant Microbe Interact, 16:545, 2003 : PubMed
Recent evidence has suggested that cutinase is required for cuticular penetration and, therefore, is essential for pathogenicity of Pyrenopeziza brassicae, the causal organism of light leaf spot disease of oilseed rape and other brassicas. In order to acquire molecular evidence for the role of cutinase in pathogenesis, the single-copy P. brassicae cutinase gene Pbc1 was disrupted by a transformation-mediated approach. Southern hybridization analysis revealed that in one mutant, NH10-1224, the disruption was due to a tandem insertion of two copies of the disruption vector into the 5' coding region of Pbc1. In contrast to the wild type, no expression of Pbc1 was detected during in planta growth or in cutin-induced mycelium of NH10-1224 and no cutinase activity was detected in culture supernatants from NH10-1224 using p-nitrophenyl butyrate as substrate. Scanning electron microscopy of Brassica napus cotyledons infected with wild-type P. brassicae confirmed that entry into the host is by direct penetration of the cuticle. In contrast, the cutinase-deficient mutant NH10-1224 failed to penetrate the cuticular layer and was unable to develop disease symptoms. This evidence is consistent with the hypothesis that Pbc1 is required for P. brassicae to penetrate the plant cuticle. Demonstration that complementation of NH10-1224 with the Pbc1 wild-type gene restores both cutinase activity and pathogenicity will be required to definitively establish that cutinase is required for successful pathogenesis of brassicas by P. brassicae.