(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Glires: NE > Rodentia: NE > Myomorpha: NE > Muroidea: NE > Muridae: NE > Murinae: NE > Rattus: NE > Rattus norvegicus: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MNQTASVSHHIKCQPSKTIKELGSNSPPQRNWKGIAIALLVILVVCSLIT MSVILLTPDELTNSSETRLSLEELLGKGFGLHNPEARWINDTDVVYKTDN GHVMKLNAETNATTLLLDNSTFVTFKASRHSLSPDLKYVLLAYDVKQIFH YSFTASYLIYNIHTGEVWELNPPEVEDSVLQYAAWGVQGQQLIYIFENNI YYQPDIKSSSLRLTSSGKEGIVFNGIADWLYEEELLHSHIAHWWSPDGER LAFLMINDSLVPNMVIPRFTGALYPKAKQYPYPKAGQANPSVKLYVVNLY GPTHTLELMPPDIFKSREYYITMVKWVSNTRTVVRWLNRPQNISILTVCE STTGACSRKYEMTSDTWISKQNEEPVFSRDGSKFFMTVPVKQGGRGEFHH IAMFLVQSKSEQITVRHLTSGNWEVIRILAYDETTQKIYFLSTEFSPRGR QLYSASTEGLLSRDCISCNFRKEDCTYFDASFSPMNQHFLLFCEGPKVPM VSLHSTDNPSNYYILERNSMMKETIQKKKLAKREIRILHIDDYELPLQLS FPKDFLEKNQYALLLIIDEEPGGQMVTEKFHVDWDSVLIDTDNVIVARFD GRGSGFQGLKVLQEIHRRTGSVEAKDQIAAIKYLLKQPYIDSKRLSIFGK GYGGYIASMILKSDEKFFKCGTVVAPISDMKLYASAFSERYLGMPSKEES TYQASSVLHNIHGLKEENLLIIHGTADTKVHFQHSAELIKHLIKAGVNYT LQVYPDEGYHISDKSKHHFYSTILRFFSDCLKEEVSVLPQEPEEDE
References
Title: Species and tissue differences in the expression of DPPY splicing variants Takimoto K, Hayashi Y, Ren X, Yoshimura N Ref: Biochemical & Biophysical Research Communications, 348:1094, 2006 : PubMed
The non-functional dipeptidyl peptidase, DPPY (DPP10), regulates the expression and gating of K+ channels in Kv4 family by tightly binding to these pore-forming subunits. Neural tissue-specific expression of this and the related DPPX (DPP6) is thought to confer rapid inactivation and other unique properties of neuronal Kv4 channels. Here we report that DPPY mRNA is abundant in human adrenal gland, but very low in the corresponding rat tissue. Furthermore, multiple DPPY splicing variants with alternative first exons are significant in the brain, whereas the expression of DPPY gene in the adrenal gland and pancreas is predominantly initiated at the two latter sites. These splicing variants, as well as an N-terminal peptide-deleted DPPY, produce similar changes in Kv4.3 gating. Thus, transcription of DPPY gene is species- and tissue-specifically controlled.
A new member of a family of proteins characterized by structural similarity to dipeptidyl peptidase (DPP) IV known as DPP10 was recently identified and linked to asthma susceptibility; however, the cellular functions of DPP10 are thus far unknown. DPP10 is highly homologous to subfamily member DPPX, which we previously reported as a modulator of Kv4-mediated A-type potassium channels (Nadal, M. S., Ozaita, A., Amarillo, Y., Vega-Saenz de Miera, E., Ma, Y., Mo, W., Goldberg, E. M., Misumi, Y., Ikehara, Y., Neubert, T. A., and Rudy, B. (2003) Neuron. 37, 449-461). We studied the ability of DPP10 protein to modulate the properties of Kv4.2 channels in heterologous expression systems. We found DPP10 activity to be nearly identical to DPPX activity and significantly different from DPPIV activity. DPPX and DPP10 facilitated Kv4.2 protein trafficking to the cell membrane, increased A-type current magnitude, and modified the voltage dependence and kinetic properties of the current such that they resembled the properties of A-type currents recorded in neurons in the central nervous system. Using in situ hybridization, we found DPP10 to be prominently expressed in brain neuronal populations that also express Kv4 subunits. Furthermore, DPP10 was detected in immunoprecipitated Kv4.2 channel complexes from rat brain membranes, confirming the association of DPP10 proteins with native Kv4.2 channels. These experiments suggest that DPP10 contributes to the molecular composition of A-type currents in the central nervous system. To dissect the structural determinants of these integral accessory proteins, we constructed chimeras of DPPX, DPP10, and DPPIV lacking the extracellular domain. Chimeras of DPPX and DPP10, but not DPPIV, were able to modulate the properties of Kv4.2 channels, highlighting the importance of the intracellular and transmembrane domains in this activity.
The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.