(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Alphaproteobacteria: NE > Rhodobacterales: NE > Rhodobacteraceae: NE > Roseobacter: NE > Roseobacter denitrificans: NE
6_AlphaBeta_hydrolase : rosdo-q16d95Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter) alpha/beta hydrolase, putative, rosdo-q161f6Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter denitrificans) hydrolase, putative, rosdo-q162t5Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter) Roseobacter litoralis Och 149 hydrolase, alpha/beta fold family, rosdo-q165m7Roseobacter denitrificans, Erythrobacter sp., Roseobacter litoralis, hydrolase, putative, rosdo-q168y6Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacte Hydrolase, putative. A85-EsteraseD-FGH : rosdo-q16bt7Roseobacter denitrificans, Roseobacter litoralis, S-formylglutathione hydrolase, putative, rosdo-q16d99Roseobacter denitrificans (Erythrobacter sp.), Roseobacter litoralis, S-formylglutathione hydrolase, putative. Atu1826-like : rosdo-q165v3Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter sp. (strain OCh 114)) (Roseobacter denitrificans). Peptidase_S15 domain-containing protein. Duf_900 : rosdo-q07gu4Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter sp. (strain OCh 114)) (Roseobacter denitrificans) Putative uncharacterized protein, rosdo-q16av5Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter sp. (strain OCh 114)) (Roseobacter denitrificans) Putative uncharacterized protein, rosdo-q16c49Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter sp. (strain OCh 114)) (Roseobacter denitrificans) Putative uncharacterized protein, rosdo-q161v7Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter sp. (strain OCh 114)) (Roseobacter denitrificans) Putative uncharacterized protein, rosdo-q168p7Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacte putative uncharacterized protein. Est-OsmC : rosdo-q166h3Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter sp. (strain OCh 114)) (Roseobacter denitrificans) esterase found in n-term of an OsmC/Ohr family domain. Haloacetate_dehalogenase : rosdo-q165i6Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter sp. (strain OCh 114)) (Roseobacter denitrificans) Haloacetate dehalogenase H-1, putative. HNLyase_Bact : rosdo-q161f3Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter sp. (strain OCh 114)) (Roseobacter denitrificans) Esterase EstC, putative. Mg-chelatase_BchO : rosdo-q16dt4Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter sp. (strain OCh 114)) (Roseobacter denitrificans). Magnesium-chelatase 30 kDa subunit. Monoglyceridelipase_lysophospholip : rosdo-q169a8Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter sp. (strain OCh 114)) (Roseobacter denitrificans) Lysophospholipase, putative. Proline_iminopeptidase : rosdo-q16d33Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter sp. (strain OCh 114)) (Roseobacter denitrificans) Roseobacter litoralis Och 149 Proline iminopeptidase. T6SS-TLE1 : rosdo-q169e0Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter sp. (strain OCh 114)) (Roseobacter denitrificans). Uncharacterized protein. UCP031982 : rosdo-q161l1Roseobacter denitrificans (strain ATCC 33942 / OCh 114) (Erythrobacter sp. (strain OCh 114)) (Roseobacter denitrificans) Putative uncharacterized protein
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Roseobacter denitrificans OCh 114: N, E.
Roseobacter litoralis Och 149: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MKMAQLGDIAVHYRVDGPEDGPPVVFANSLGTDMRLWDPVLPFLPSGLRI IRYDKRGHGLTSCPPGRYAMGALVKDAENLLDHLQVRNCVFVGLSIGGMI AQGLAVKRLDLIRAMVLSNTAAKIGTPALWDARIADVESGGIEKLADAVM ERWFSAAFRTRAELALWRNMLTRQEDNGYIGCSAAISGTDFYTPTSGLRL PTLGIAGSEDGSTPPDLVRETTDLIPGSQFHLIRNAGHLPCVEQPEEYAR VLTGFLQQVGHIAGPDG
BACKGROUND: Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. RESULTS: The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. CONCLUSIONS: The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability.
Purple aerobic anoxygenic phototrophs (AAPs) are the only organisms known to capture light energy to enhance growth only in the presence of oxygen but do not produce oxygen. The highly adaptive AAPs compose more than 10% of the microbial community in some euphotic upper ocean waters and are potentially major contributors to the fixation of the greenhouse gas CO2. We present the complete genomic sequence and feature analysis of the AAP Roseobacter denitrificans, which reveal clues to its physiology. The genome lacks genes that code for known photosynthetic carbon fixation pathways, and most notably missing are genes for the Calvin cycle enzymes ribulose bisphosphate carboxylase (RuBisCO) and phosphoribulokinase. Phylogenetic evidence implies that this absence could be due to a gene loss from a RuBisCO-containing alpha-proteobacterial ancestor. We describe the potential importance of mixotrophic rather than autotrophic CO2 fixation pathways in these organisms and suggest that these pathways function to fix CO2 for the formation of cellular components but do not permit autotrophic growth. While some genes that code for the redox-dependent regulation of photosynthetic machinery are present, many light sensors and transcriptional regulatory motifs found in purple photosynthetic bacteria are absent.