(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Alphaproteobacteria: NE > Sphingomonadales: NE > Sphingomonadaceae: NE > Sphingomonas: NE > Sphingomonas wittichii: NE
No mutation 5 structures(e.g. : 4LXG, 4LXH, 4LXI... more)(less) 4LXG: Crystal structure of DxnB2, a carbon - carbon bond hydrolase from Sphingomonas wittichii RW1, 4LXH: Crystal Structure of the S105A mutant of a carbon-carbon bond hydrolase, DxnB2 from Sphingomonas wittichii RW1, in complex with 3-Cl HOPDA, 4LXI: Crystal Structure of the S105A mutant of a carbon-carbon bond hydrolase, DxnB2 from Sphingomonas wittichii RW1, in complex with 5,8-diF HOPDA, 4LYD: Crystal structure of the S105A mutant of a C-C hydrolase, DxnB2 from Sphingomonas wittichii RW1, 4LYE: Crystal structure of the S105A mutant of a C-C hydrolase, DxnB2 from Sphingomonas wittichii RW1, in complex with substrate HOPDA No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MFEQFESKFIDCDGIRTHYIEMGEGDPLVLVHGGGAGADGRSNFADNFPI FARHMRVIAYDMVGFGQTDAPDPAGFAYTQAARTDHLISFIKALGLSKIC LIGNSMGGTTACGAALKAPELIDRLVLMGAAVNISPDDMVANRDDLAAVM SYDGSEEGMRKIIAALTHSYQPTDDIVHYRHEASLRPTTTAAYKATMGWA KQNGLYYSPEQLASLTMPVLVLGGKNDVMVPVRKVIDQILAIPQAQAIGH VFPNCGHWVMIEYPEEFCTQTLHFFGKLD
DxnB2 and BphD are meta-cleavage product (MCP) hydrolases that catalyze C-C bond hydrolysis of the biphenyl metabolite 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA). BphD is a bottleneck in the bacterial degradation of polychlorinated biphenyls (PCBs) by the Bph catabolic pathway due in part to inhibition by 3-Cl HOPDAs. By contrast, DxnB2 from Sphingomonas wittichii RW1 catalyzes the hydrolysis of 3-Cl HOPDAs more efficiently. X-ray crystallographic studies of the catalytically inactive S105A variant of DxnB2 complexed with 3-Cl HOPDA revealed a binding mode in which C1 through C6 of the dienoate are coplanar. The chlorine substituent is accommodated by a hydrophobic pocket that is larger than the homologous site in BphDLB400 from Burkholderia xenovorans LB400. The planar binding mode observed in the crystalline complex was consistent with the hyper- and hypsochromically shifted absorption spectra of 3-Cl and 3,9,11-triCl HOPDA, respectively, bound to S105A in solution. Moreover, ES(red), an intermediate possessing a bathochromically shifted spectrum observed in the turnover of HOPDA, was not detected, suggesting that substrate destabilization was rate-limiting in the turnover of these PCB metabolites. Interestingly, electron density for the first alpha-helix of the lid domain was poorly defined in the dimeric DxnB2 structures, unlike in the tetrameric BphDLB400. Structural comparison of MCP hydrolases identified the NC-loop, connecting the lid to the alpha/beta-hydrolase core domain, as a determinant in the oligomeric state and suggests its involvement in catalysis. Finally, an increased mobility of the DxnB2 lid may contribute to the enzyme's ability to hydrolyze PCB metabolites, highlighting how lid architecture contributes to substrate specificity in alpha/beta-hydrolases.
The meta-cleavage product (MCP) hydrolases utilize a Ser-His-Asp triad to hydrolyze a carbon-carbon bond. Hydrolysis of the MCP substrate has been proposed to proceed via an enol-to-keto tautomerization followed by a nucleophilic mechanism of catalysis. Ketonization involves an intermediate, ES(red), which possesses a remarkable bathochromically shifted absorption spectrum. We investigated the catalytic mechanism of the MCP hydrolases using DxnB2 from Sphingomonas wittichii RW1. Pre-steady-state kinetic and LC ESI/MS evaluation of the DxnB2-mediated hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid to 2-hydroxy-2,4-pentadienoic acid and benzoate support a nucleophilic mechanism catalysis. In DxnB2, the rate of ES(red) decay and product formation showed a solvent kinetic isotope effect of 2.5, indicating that a proton transfer reaction, assigned here to substrate ketonization, limits the rate of acylation. For a series of substituted MCPs, this rate was linearly dependent on MCP pKa2 (betanuc approximately 1). Structural characterization of DxnB2 S105A:MCP complexes revealed that the catalytic histidine is displaced upon substrate-binding. The results provide evidence for enzyme-catalyzed ketonization in which the catalytic His-Asp pair does not play an essential role. The data further suggest that ES(red) represents a dianionic intermediate that acts as a general base to activate the serine nucleophile. This substrate-assisted mechanism of nucleophilic catalysis distinguishes MCP hydrolases from other serine hydrolases.
        
Title: Characterization of a C-C bond hydrolase from Sphingomonas wittichii RW1 with novel specificities towards polychlorinated biphenyl metabolites Seah SY, Ke J, Denis G, Horsman GP, Fortin PD, Whiting CJ, Eltis LD Ref: Journal of Bacteriology, 189:4038, 2007 : PubMed
Sphingomonas wittichii RW1 degrades chlorinated dibenzofurans and dibenzo-p-dioxins via meta cleavage. We used inverse PCR to amplify dxnB2, a gene encoding one of three meta-cleavage product (MCP) hydrolases identified in the organism that are homologues of BphD involved in biphenyl catabolism. Purified DxnB2 catalyzed the hydrolysis of 8-OH 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (HOPDA) approximately six times faster than for HOPDA at saturating substrate concentrations. Moreover, the specificity of DxnB2 for HOPDA (k(cat)/K(m) = 1.2 x 10(7) M(-1) s(-1)) was about half that of the BphDs of Burkholderia xenovorans LB400 and Rhodococcus globerulus P6, two potent polychlorinated biphenyl (PCB)-degrading strains. Interestingly, DxnB2 transformed 3-Cl and 4-OH HOPDAs, compounds that inhibit the BphDs and limit PCB degradation. DxnB2 had a higher specificity for 9-Cl HOPDA than for HOPDA but a lower specificity for 8-Cl HOPDA (k(cat)/K(m) = 1.7 x 10(6) M(-1) s(-1)), the chlorinated analog of 8-OH HOPDA produced during dibenzofuran catabolism. Phylogenetic analyses based on structure-guided sequence alignment revealed that DxnB2 belongs to a previously unrecognized class of MCP hydrolases, evolutionarily divergent from the BphDs although the physiological substrates of both enzyme types are HOPDAs. However, both classes of enzymes have mainly small hydrophobic residues lining the subsite that binds the C-6 phenyl of HOPDA, in contrast to the bulky hydrophobic residues (Phe106, Phe135, Trp150, and Phe197) found in the class II enzymes that prefer substrates possessing a C-6 alkyl. Thr196 and/or Asn203 appears to be an important determinant of specificity for DxnB2, potentially forming hydrogen bonds with the 8-OH substituent. This study demonstrates that the substrate specificities of evolutionarily divergent hydrolases may be useful for degrading mixtures of pollutants, such as PCBs.