(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Actinobacteria [phylum]: NE > Actinobacteria [class]: NE > Streptomycetales: NE > Streptomycetaceae: NE > Streptomyces: NE > Streptomyces ambofaciens: NE > Streptomyces ambofaciens ATCC 23877: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MLALGTGATALAVTGSPAAAHPGPHPGPVPSDRELARSLPGGFRSRHARV GGVRLHYVSGGHGEPLLLVPGWPQTWWAYRKVMPQLARRYHVIAVDLRGM GGSDKPAGGYDKKTMAADLHALVRGLGHRQVNVAGHDIGSMVAFAFAANH PEATRKVALLDTPHPDQSEYEMRILCRPGTGTTLWWWAFNQLQALPEQLM HGRMRHVIDWLYANSLADQSLVGDLDRDIYANAYNSPQAVRAGTRWYQAC HQDITDQAGYGKLTMPVLGIGGNFTFEDLRNKLTAQATDVHMVRASKSVH YLPEEEPDVVAGALLDFFG
Epoxide hydrolases (EHs) have been characterized and engineered as biocatalysts that convert epoxides to valuable chiral vicinal diol precursors of drugs and bioactive compounds. Nonetheless, the regioselectivity control of the epoxide ring opening by EHs remains challenging. Alp1U is an alpha/beta-fold EH that exhibits poor regioselectivity in the epoxide hydrolysis of fluostatin C (1), and produces a pair of stereoisomers. Herein, we established the absolute configuration of the two stereoisomeric products and determined the crystal structure of Alp1U. A W186/W187/Y247 oxirane oxygen hole was identified in Alp1U that replaced the canonical Tyr/Tyr pair in alpha/beta-EHs. Mutation of residues in the atypical oxirane oxygen hole of Alp1U improved the regioselectivity for epoxide hydrolysis on 1. The single site Y247F mutation led to highly regioselective (98%) attack at C-3 of 1, while the double mutation W187F/Y247F resulted in regioselective (94%) nucleophilic attack at C-2. Furthermore, single crystal X-ray structures of the two regioselective Alp1U variants in complex with 1 were determined. These findings allowed insights into the reaction details of Alp1U, and provided a new approach for engineering regioselective epoxide hydrolases.
        
Title: Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877 Barona-Gomez F, Lautru S, Francou FX, Leblond P, Pernodet JL, Challis GL Ref: Microbiology, 152:3355, 2006 : PubMed
Siderophore-mediated iron acquisition has been well studied in many bacterial pathogens because it contributes to virulence. In contrast, siderophore-mediated iron acquisition by saprophytic bacteria has received relatively little attention. The independent identification of the des and cch gene clusters that direct production of the tris-hydroxamate ferric iron-chelators desferrioxamine E and coelichelin, respectively, which could potentially act as siderophores in the saprophyte Streptomyces coelicolor A3(2), has recently been reported. Here it is shown that the des cluster also directs production of desferrioxamine B in S. coelicolor and that very similar des and cch clusters direct production of desferrioxamines E and B, and coelichelin, respectively, in Streptomyces ambofaciens ATCC 23877. Sequence analyses of the des and cch clusters suggest that components of ferric-siderophore uptake systems are also encoded within each cluster. The construction and analysis of a series of mutants of S. coelicolor lacking just biosynthetic genes or both the biosynthetic and siderophore uptake genes from the des and cch clusters demonstrated that coelichelin and desferrioxamines E and B all function as siderophores in this organism and that at least one of these metabolites is required for growth under defined conditions even in the presence of significant quantities of ferric iron. These experiments also demonstrated that a third siderophore uptake system must be present in S. coelicolor, in addition to the two encoded within the cch and des clusters, which show selectivity for coelichelin and desferrioxamine E, respectively. The ability of the S. coelicolor mutants to utilize a range of exogenous xenosiderophores for iron acquisition was also examined, showing that the third siderophore-iron transport system has broad specificity for tris-hydroxamate-containing siderophores. Together, these results define a complex system of multiple biosynthetic and uptake pathways for siderophore-mediated iron acquisition in S. coelicolor and S. ambofaciens.
The sequences of the terminal inverted repeats (TIRs) ending the linear chromosomal DNA of two Streptomyces ambofaciens strains, ATCC23877 and DSM40697 (198 kb and 213 kb, respectively), were determined from two sets of recombinant cosmids. Among the 215 coding DNA sequences (CDSs) predicted in the TIRs of strain DSM40697, 65 are absent in the TIRs of strain ATCC23877. Reciprocally, 45 of the 194 predicted CDSs are specific to the ATCC23877 strain. The strain-specific CDSs are located mainly at the terminal end of the TIRs. Indeed, although TIRs appear almost identical over 150 kb (99% nucleotide identity), large regions of DNA of 60 kb (DSM40697) and 48 kb (ATCC23877), mostly spanning the ends of the chromosome, are strain specific. These regions are rich in plasmid-associated genes, including genes encoding putative conjugal transfer functions. The strain-specific regions also share a G+C content (68%) lower than that of the rest of the genome (from 71% to 73%), a percentage that is more typical of Streptomyces plasmids and mobile elements. These data suggest that exchanges of replicon extremities have occurred, thereby contributing to the terminal variability observed at the intraspecific level. In addition, the terminal regions include many mobile genetic element-related genes, pseudogenes, and genes related to adaptation. The results give insight into the mechanisms of evolution of the TIRs: integration of new information and/or loss of DNA fragments and subsequent homogenization of the two chromosomal extremities.
Epoxide hydrolases (EHs) have been characterized and engineered as biocatalysts that convert epoxides to valuable chiral vicinal diol precursors of drugs and bioactive compounds. Nonetheless, the regioselectivity control of the epoxide ring opening by EHs remains challenging. Alp1U is an alpha/beta-fold EH that exhibits poor regioselectivity in the epoxide hydrolysis of fluostatin C (1), and produces a pair of stereoisomers. Herein, we established the absolute configuration of the two stereoisomeric products and determined the crystal structure of Alp1U. A W186/W187/Y247 oxirane oxygen hole was identified in Alp1U that replaced the canonical Tyr/Tyr pair in alpha/beta-EHs. Mutation of residues in the atypical oxirane oxygen hole of Alp1U improved the regioselectivity for epoxide hydrolysis on 1. The single site Y247F mutation led to highly regioselective (98%) attack at C-3 of 1, while the double mutation W187F/Y247F resulted in regioselective (94%) nucleophilic attack at C-2. Furthermore, single crystal X-ray structures of the two regioselective Alp1U variants in complex with 1 were determined. These findings allowed insights into the reaction details of Alp1U, and provided a new approach for engineering regioselective epoxide hydrolases.
        
Title: Identification of Alp1U and Lom6 as epoxy hydrolases and implications for kinamycin and lomaiviticin biosynthesis Wang B, Guo F, Ren J, Ai G, Aigle B, Fan K, Yang K Ref: Nat Commun, 6:7674, 2015 : PubMed
The naturally occurring diazobenzofluorenes, kinamycins, fluostatins and lomaiviticins, possess highly oxygenated A-rings, via which the last forms a dimeric pharmacophore. However, neither the A-ring transformation nor the dimerization mechanisms have been explored thus far. Here we propose a unified biosynthetic logic for the three types of antibiotics and verify one key reaction via detailed genetic and enzymatic experiments. Alp1U and Lom6 from the kinamycin and lomaiviticin biosynthesis, respectively, are shown to catalyse epoxy hydrolysis on a substrate that is obtained by chemical deacetylation of a kinamycin-pathway-derived intermediate. Thus, our study provides the first evidence for the existence of an epoxy intermediate in lomaiviticin biosynthesis. Furthermore, our results suggest that the dimerization in the lomaiviticin biosynthesis proceeds after dehydration of a product generated by Lom6.
        
Title: Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877 Barona-Gomez F, Lautru S, Francou FX, Leblond P, Pernodet JL, Challis GL Ref: Microbiology, 152:3355, 2006 : PubMed
Siderophore-mediated iron acquisition has been well studied in many bacterial pathogens because it contributes to virulence. In contrast, siderophore-mediated iron acquisition by saprophytic bacteria has received relatively little attention. The independent identification of the des and cch gene clusters that direct production of the tris-hydroxamate ferric iron-chelators desferrioxamine E and coelichelin, respectively, which could potentially act as siderophores in the saprophyte Streptomyces coelicolor A3(2), has recently been reported. Here it is shown that the des cluster also directs production of desferrioxamine B in S. coelicolor and that very similar des and cch clusters direct production of desferrioxamines E and B, and coelichelin, respectively, in Streptomyces ambofaciens ATCC 23877. Sequence analyses of the des and cch clusters suggest that components of ferric-siderophore uptake systems are also encoded within each cluster. The construction and analysis of a series of mutants of S. coelicolor lacking just biosynthetic genes or both the biosynthetic and siderophore uptake genes from the des and cch clusters demonstrated that coelichelin and desferrioxamines E and B all function as siderophores in this organism and that at least one of these metabolites is required for growth under defined conditions even in the presence of significant quantities of ferric iron. These experiments also demonstrated that a third siderophore uptake system must be present in S. coelicolor, in addition to the two encoded within the cch and des clusters, which show selectivity for coelichelin and desferrioxamine E, respectively. The ability of the S. coelicolor mutants to utilize a range of exogenous xenosiderophores for iron acquisition was also examined, showing that the third siderophore-iron transport system has broad specificity for tris-hydroxamate-containing siderophores. Together, these results define a complex system of multiple biosynthetic and uptake pathways for siderophore-mediated iron acquisition in S. coelicolor and S. ambofaciens.
The sequences of the terminal inverted repeats (TIRs) ending the linear chromosomal DNA of two Streptomyces ambofaciens strains, ATCC23877 and DSM40697 (198 kb and 213 kb, respectively), were determined from two sets of recombinant cosmids. Among the 215 coding DNA sequences (CDSs) predicted in the TIRs of strain DSM40697, 65 are absent in the TIRs of strain ATCC23877. Reciprocally, 45 of the 194 predicted CDSs are specific to the ATCC23877 strain. The strain-specific CDSs are located mainly at the terminal end of the TIRs. Indeed, although TIRs appear almost identical over 150 kb (99% nucleotide identity), large regions of DNA of 60 kb (DSM40697) and 48 kb (ATCC23877), mostly spanning the ends of the chromosome, are strain specific. These regions are rich in plasmid-associated genes, including genes encoding putative conjugal transfer functions. The strain-specific regions also share a G+C content (68%) lower than that of the rest of the genome (from 71% to 73%), a percentage that is more typical of Streptomyces plasmids and mobile elements. These data suggest that exchanges of replicon extremities have occurred, thereby contributing to the terminal variability observed at the intraspecific level. In addition, the terminal regions include many mobile genetic element-related genes, pseudogenes, and genes related to adaptation. The results give insight into the mechanisms of evolution of the TIRs: integration of new information and/or loss of DNA fragments and subsequent homogenization of the two chromosomal extremities.