(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Viridiplantae: NE > Streptophyta: NE > Streptophytina: NE > Embryophyta: NE > Tracheophyta: NE > Euphyllophyta: NE > Spermatophyta: NE > Magnoliophyta: NE > Mesangiospermae: NE > eudicotyledons: NE > Gunneridae: NE > Pentapetalae: NE > asterids: NE > lamiids: NE > Lamiales: NE > Orobanchaceae: NE > Buchnereae: NE > Striga: NE > Striga hermonthica: NE
No mutation 9 structures(e.g. : 5Z7Y, 5Z82, 5Z89... more)(less) 5Z7Y: Crystal structure of the strigolactone receptor from Striga hermonthica HTL7 (ShHTL7), 5Z82: Structural basis for specific inhibition of highly sensitive strigolactone receptor ShHTL7 from Striga hermonthica, 5Z89: Structural basis for specific inhibition of highly sensitive strigolactone receptor ShHTL7 from Striga hermonthica(with Triton X100), 5Z8P: Structural basis for specific inhibition of highly sensitive strigolactone receptor ShHTL7 from Striga hermonthica, 5Z95: Structural basis for specific inhibition of highly sensitive strigolactone receptor ShHTL7 from Striga hermonthica (with Triton X100), 6A9D: Crystal structure of the strigolactone receptor ShHTL7 from Striga hermonthica, 7C8L: Hybrid designing of potent inhibitors of Striga strigolactone receptor ShHTL7, 7SNU: Crystal structure of ShHTL7 from Striga hermonthica in complex with strigolactone antagonist RG6, 7WA8: Strigolactone receptors in Striga ShHTL7 No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSSIGLAHNVTILGSGETTVVLGHGYGTDQSVWKLLVPYLVDDYKVLLYD HMGAGTTNPDYFDFDRYSSLEGYSYDLIAILEEFQVSKCIYVGHSMSSMA AAVASIFRPDLFHKLVMISPTPRLINTEEYYGGFEQKVMDETLRSLDENF KSLSLGTAPLLLACDLESAAMQEYCRTLFNMRPDIACCITRMICGLDLRP YLGHVTVPCHIIQSSNDIMVPVAVGEYLRKNLGGPSVVEVMPTEGHLPHL SMPEVTIPVVLRHIRQDITDH
References
3 moreTitle: Molecular basis for high ligand sensitivity and selectivity of strigolactone receptors in Striga Wang Y, Yao R, Du X, Guo L, Chen L, Xie D, Smith SM Ref: Plant Physiol, 185:1411, 2021 : PubMed
Seeds of the root parasitic plant Striga hermonthica can sense very low concentrations of strigolactones (SLs) exuded from host roots. The S. hermonthica hyposensitive to light (ShHTL) proteins are putative SL receptors, among which ShHTL7 reportedly confers sensitivity to picomolar levels of SL when expressed in Arabidopsis thaliana. However, the molecular mechanism underlying ShHTL7 sensitivity is unknown. Here we determined the ShHTL7 crystal structure and quantified its interactions with various SLs and key interacting proteins. We established that ShHTL7 has an active-site pocket with broad-spectrum response to different SLs and moderate affinity. However, in contrast to other ShHTLs, we observed particularly high affinity of ShHTL7 for F-box protein AtMAX2. Furthermore, ShHTL7 interacted with AtMAX2 and with transcriptional regulator AtSMAX1 in response to nanomolar SL concentration. ShHTL7 mutagenesis analyses identified surface residues that contribute to its high-affinity binding to AtMAX2 and residues in the ligand binding pocket that confer broad-spectrum response to SLs with various structures. Crucially, yeast-three hybrid experiments showed that AtMAX2 confers responsiveness of the ShHTL7-AtSMAX1 interaction to picomolar levels of SL in line with the previously reported physiological sensitivity. These findings highlight the key role of SL-induced MAX2-ShHTL7-SMAX1 complex formation in determining the sensitivity to SL. Moreover, these data suggest a strategy to screen for compounds that could promote suicidal seed germination at physiologically relevant levels.
Striga hermonthica is a root parasitic plant that infests cereals, decimating yields, particularly in sub-Saharan Africa. For germination, Striga seeds require host-released strigolactones that are perceived by the family of HYPOSENSITIVE to LIGHT (ShHTL) receptors. Inhibiting seed germination would thus be a promising approach for combating Striga However, there are currently no strigolactone antagonists that specifically block ShHTLs and do not bind to DWARF14, the homologous strigolactone receptor of the host. Here, we show that the octyl phenol ethoxylate Triton X-100 inhibits S. hermonthica seed germination without affecting host plants. High-resolution X-ray structures reveal that Triton X-100 specifically plugs the catalytic pocket of ShHTL7. ShHTL7-specific inhibition by Triton X-100 demonstrates the dominant role of this particular ShHTL receptor for Striga germination. Our structural analysis provides a rationale for the broad specificity and high sensitivity of ShHTL7, and reveals that strigolactones trigger structural changes in ShHTL7 that are required for downstream signaling. Our findings identify Triton and the related 2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]acetic acid as promising lead compounds for the rational design of efficient Striga-specific herbicides.
HYPOSENSITIVE TO LIGHT (HTL) and DWARF14 (D14) mediate the perception of karrikin and strigolactone, which stimulates germination of the parasitic weed Striga. However, their role in parasitic seeds is poorly understood, and the basis for their differing responsiveness remains unclear. Here, we show that Striga hermonthica HTL proteins (ShHTLs) in 'conserved' and 'intermediate' clades are able to bind karrikin. The 'divergent' clade is able to hydrolyze strigolactone. Unexpectedly, we find that ShD14 is also capable of hydrolyzing strigolactone. Through comparative analysis of ShHTLs and ShD14 crystal structures, we provide insights into the basis for their selectivity. Moreover, we show that both ShD14 and divergent clade ShHTLs, but not conserved and intermediate clade ShHTLs, can interact with the putative downstream signaling component ShMAX2 in the presence of the synthetic strigolactone, rac-GR24. These findings provide insight into how strigolactone is perceived and how ligand specificity is determined.
        
3 lessTitle: Molecular basis for high ligand sensitivity and selectivity of strigolactone receptors in Striga Wang Y, Yao R, Du X, Guo L, Chen L, Xie D, Smith SM Ref: Plant Physiol, 185:1411, 2021 : PubMed
Seeds of the root parasitic plant Striga hermonthica can sense very low concentrations of strigolactones (SLs) exuded from host roots. The S. hermonthica hyposensitive to light (ShHTL) proteins are putative SL receptors, among which ShHTL7 reportedly confers sensitivity to picomolar levels of SL when expressed in Arabidopsis thaliana. However, the molecular mechanism underlying ShHTL7 sensitivity is unknown. Here we determined the ShHTL7 crystal structure and quantified its interactions with various SLs and key interacting proteins. We established that ShHTL7 has an active-site pocket with broad-spectrum response to different SLs and moderate affinity. However, in contrast to other ShHTLs, we observed particularly high affinity of ShHTL7 for F-box protein AtMAX2. Furthermore, ShHTL7 interacted with AtMAX2 and with transcriptional regulator AtSMAX1 in response to nanomolar SL concentration. ShHTL7 mutagenesis analyses identified surface residues that contribute to its high-affinity binding to AtMAX2 and residues in the ligand binding pocket that confer broad-spectrum response to SLs with various structures. Crucially, yeast-three hybrid experiments showed that AtMAX2 confers responsiveness of the ShHTL7-AtSMAX1 interaction to picomolar levels of SL in line with the previously reported physiological sensitivity. These findings highlight the key role of SL-induced MAX2-ShHTL7-SMAX1 complex formation in determining the sensitivity to SL. Moreover, these data suggest a strategy to screen for compounds that could promote suicidal seed germination at physiologically relevant levels.
Striga hermonthica is a root parasitic plant that infests cereals, decimating yields, particularly in sub-Saharan Africa. For germination, Striga seeds require host-released strigolactones that are perceived by the family of HYPOSENSITIVE to LIGHT (ShHTL) receptors. Inhibiting seed germination would thus be a promising approach for combating Striga However, there are currently no strigolactone antagonists that specifically block ShHTLs and do not bind to DWARF14, the homologous strigolactone receptor of the host. Here, we show that the octyl phenol ethoxylate Triton X-100 inhibits S. hermonthica seed germination without affecting host plants. High-resolution X-ray structures reveal that Triton X-100 specifically plugs the catalytic pocket of ShHTL7. ShHTL7-specific inhibition by Triton X-100 demonstrates the dominant role of this particular ShHTL receptor for Striga germination. Our structural analysis provides a rationale for the broad specificity and high sensitivity of ShHTL7, and reveals that strigolactones trigger structural changes in ShHTL7 that are required for downstream signaling. Our findings identify Triton and the related 2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]acetic acid as promising lead compounds for the rational design of efficient Striga-specific herbicides.
HYPOSENSITIVE TO LIGHT (HTL) and DWARF14 (D14) mediate the perception of karrikin and strigolactone, which stimulates germination of the parasitic weed Striga. However, their role in parasitic seeds is poorly understood, and the basis for their differing responsiveness remains unclear. Here, we show that Striga hermonthica HTL proteins (ShHTLs) in 'conserved' and 'intermediate' clades are able to bind karrikin. The 'divergent' clade is able to hydrolyze strigolactone. Unexpectedly, we find that ShD14 is also capable of hydrolyzing strigolactone. Through comparative analysis of ShHTLs and ShD14 crystal structures, we provide insights into the basis for their selectivity. Moreover, we show that both ShD14 and divergent clade ShHTLs, but not conserved and intermediate clade ShHTLs, can interact with the putative downstream signaling component ShMAX2 in the presence of the synthetic strigolactone, rac-GR24. These findings provide insight into how strigolactone is perceived and how ligand specificity is determined.
Strigolactones are naturally occurring signaling molecules that affect plant development, fungi-plant interactions, and parasitic plant infestations. We characterized the function of 11 strigolactone receptors from the parasitic plant Striga hermonthica using chemical and structural biology. We found a clade of polyspecific receptors, including one that is sensitive to picomolar concentrations of strigolactone. A crystal structure of a highly sensitive strigolactone receptor from Striga revealed a larger binding pocket than that of the Arabidopsis receptor, which could explain the increased range of strigolactone sensitivity. Thus, the sensitivity of Striga to strigolactones from host plants is driven by receptor sensitivity. By expressing strigolactone receptors in Arabidopsis, we developed a bioassay that can be used to identify chemicals and crops with altered strigolactone levels.
Elucidating the signaling mechanism of strigolactones has been the key to controlling the devastating problem caused by the parasitic plant Striga hermonthica. To overcome the genetic intractability that has previously interfered with identification of the strigolactone receptor, we developed a fluorescence turn-on probe, Yoshimulactone Green (YLG), which activates strigolactone signaling and illuminates signal perception by the strigolactone receptors. Here we describe how strigolactones bind to and act via ShHTLs, the diverged family of alpha/beta hydrolase-fold proteins in Striga. Live imaging using YLGs revealed that a dynamic wavelike propagation of strigolactone perception wakes up Striga seeds. We conclude that ShHTLs function as the strigolactone receptors mediating seed germination in Striga. Our findings enable access to strigolactone receptors and observation of the regulatory dynamics for strigolactone signal transduction in Striga.