(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Viridiplantae: NE > Streptophyta: NE > Streptophytina: NE > Embryophyta: NE > Tracheophyta: NE > Euphyllophyta: NE > Spermatophyta: NE > Magnoliophyta: NE > Mesangiospermae: NE > eudicotyledons: NE > Gunneridae: NE > Pentapetalae: NE > asterids: NE > lamiids: NE > Lamiales: NE > Orobanchaceae: NE > Buchnereae: NE > Striga: NE > Striga hermonthica: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSTVGAAHNVTVLGSGETTVVLGHGFGTDQSVWRHLVPYLVDEYKVLLYD NMGAGTTNPDYFDFERYATLEGYTYDLIAILDEFQVSSCIYVGHSMSAMA AVVASIFRPDLFRKIVMISSTPRLSNTKDYYGGFEQHELDELSAAVEHNY KAMASGYAPLIVGGDLESSAIQEFSRTLFNVRPDIGLSVCRMVNSFDLRP YLSQVTVPCHIIQSSKDTMVPVVMGEYLRRRLGGKTVVEVLPTEGHLPHL SAPEITVPALVRHIRQDIADE
Strigolactones are naturally occurring signaling molecules that affect plant development, fungi-plant interactions, and parasitic plant infestations. We characterized the function of 11 strigolactone receptors from the parasitic plant Striga hermonthica using chemical and structural biology. We found a clade of polyspecific receptors, including one that is sensitive to picomolar concentrations of strigolactone. A crystal structure of a highly sensitive strigolactone receptor from Striga revealed a larger binding pocket than that of the Arabidopsis receptor, which could explain the increased range of strigolactone sensitivity. Thus, the sensitivity of Striga to strigolactones from host plants is driven by receptor sensitivity. By expressing strigolactone receptors in Arabidopsis, we developed a bioassay that can be used to identify chemicals and crops with altered strigolactone levels.
Elucidating the signaling mechanism of strigolactones has been the key to controlling the devastating problem caused by the parasitic plant Striga hermonthica. To overcome the genetic intractability that has previously interfered with identification of the strigolactone receptor, we developed a fluorescence turn-on probe, Yoshimulactone Green (YLG), which activates strigolactone signaling and illuminates signal perception by the strigolactone receptors. Here we describe how strigolactones bind to and act via ShHTLs, the diverged family of alpha/beta hydrolase-fold proteins in Striga. Live imaging using YLGs revealed that a dynamic wavelike propagation of strigolactone perception wakes up Striga seeds. We conclude that ShHTLs function as the strigolactone receptors mediating seed germination in Striga. Our findings enable access to strigolactone receptors and observation of the regulatory dynamics for strigolactone signal transduction in Striga.