(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Actinobacteria [phylum]: NE > Actinobacteria [class]: NE > Streptomycetales: NE > Streptomycetaceae: NE > Streptomyces: NE > Streptomyces venezuelae: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA SGADTGAGAGMFRALFRQAVEDDRYGEFLDVLAEASAFRPQFASPEACSE RLDPVLLAGGPTDRAEGRAVLVGCTGTAANGGPHEFLRLSTSFQEERDFL AVPLPGYGTGTGTGTALLPADLDTALDAQARAILRAAGDAPVVLLGHSGG ALLAHELAFRLERAHGAPPAGIVLVDPYPPGHQEPIEVWSRQLGEGLFAG ELEPMSDARLLAMGRYARFLAGPRPGRSSAPVLLVRASEPLGDWQEERGD WRAHWDLPHTVADVPGDHFTMMRDHAPAVAEAVLSWLDAIEGIEGAGK
References
9 moreTitle: Identification of a Thioesterase Bottleneck in the Pikromycin Pathway through Full-Module Processing of Unnatural Pentaketides Hansen DA, Koch AA, Sherman DH Ref: Journal of the American Chemical Society, 139:13450, 2017 : PubMed
Polyketide biosynthetic pathways have been engineered to generate natural product analogs for over two decades. However, manipulation of modular type I polyketide synthases (PKSs) to make unnatural metabolites commonly results in attenuated yields or entirely inactive pathways, and the mechanistic basis for compromised production is rarely elucidated since rate-limiting or inactive domain(s) remain unidentified. Accordingly, we synthesized and assayed a series of modified pikromycin (Pik) pentaketides that mimic early pathway engineering to probe the substrate tolerance of the PikAIII-TE module in vitro. Truncated pentaketides were processed with varying efficiencies to corresponding macrolactones, while pentaketides with epimerized chiral centers were poorly processed by PikAIII-TE and failed to generate 12-membered ring products. Isolation and identification of extended but prematurely offloaded shunt products suggested that the Pik thioesterase (TE) domain has limited substrate flexibility and functions as a gatekeeper in the processing of unnatural substrates. Synthesis of an analogous hexaketide with an epimerized nucleophilic hydroxyl group allowed for direct evaluation of the substrate stereoselectivity of the excised TE domain. The epimerized hexaketide failed to undergo cyclization and was exclusively hydrolyzed, confirming the TE domain as a key catalytic bottleneck. In an accompanying paper , we engineer the standalone Pik thioesterase to yield a thioesterase (TE(S148C)) and module (PikAIII-TE(S148C)) that display gain-of-function processing of substrates with inverted hydroxyl groups.
        
Title: Insights into channel architecture and substrate specificity from crystal structures of two macrocycle-forming thioesterases of modular polyketide synthases Tsai SC, Lu H, Cane DE, Khosla C, Stroud RM Ref: Biochemistry, 41:12598, 2002 : PubMed
Modular polyketide synthases (PKSs) synthesize the polyketide cores of pharmacologically important natural products such as erythromycin and picromycin. Understanding PKSs at high resolution could present new opportunities for chemoenzymatic synthesis of complex molecules. The crystal structures of macrocycle-forming thioesterase (TE) domains from the picromycin synthase (PICS) and 6-deoxyerythronolide B synthase (DEBS) were determined to 1.8-3.0 A with an R(crys) of 19.2-24.4%, including three structures of PICS TE (crystallized at pH 7.6, 8.0, and 8.4) and a second crystal form of DEBS TE. As predicted by the previous work on DEBS TE [Tsai, S. C., et al. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 14808-14813], PICS TE contains an open substrate channel and a hydrophobic dimer interface. Notwithstanding their similarity, the dimer interfaces and substrate channels of DEBS TE and PICS TE reveal key differences. The structural basis for the divergent substrate specificities of DEBS TE and PICS TE is analyzed. The size of the substrate channel increases with increasing pH, presumably due to electrostatic repulsion in the channel at elevated pH. Together, these structures support previous predictions that macrocycle-forming thioesterases from PKSs share the same protein fold, an open substrate channel, a similar catalytic mechanism, and a hydrophobic dimer interface. They also provide a basis for the design of enzymes capable of catalyzing regioselective macrocyclization of natural or synthetic substrates. A series of high-resolution snapshots of a protein channel at different pHs is presented alongside analysis of channel residues, which could help in the redesign of the protein channel architecture.
        
Title: A gene cluster for macrolide antibiotic biosynthesis in streptomyces venezuelae: architecture of metabolic diversity. Xue Y, Zhao L, Liu Hw, Sherman DH Ref: Proceedings of the National Academy of Sciences of the United States of America, 95:12111, 1998 : PubMed
Engineering polyketide synthases (PKS) to produce new metabolites requires an understanding of catalytic points of failure during substrate processing. Growing evidence indicates the thioesterase (TE) domain as a significant bottleneck within engineered PKS systems. We created a series of hybrid PKS modules bearing exchanged TE domains from heterologous pathways and challenged them with both native and non-native polyketide substrates. Reactions pairing wildtype PKS modules with non-native substrates primarily resulted in poor conversions to anticipated macrolactones. Likewise, product formation with native substrates and hybrid PKS modules bearing non-cognate TE domains was severely reduced. In contrast, non-native substrates were converted by most hybrid modules containing a substrate compatible TE, directly implicating this domain as the major catalytic gatekeeper and highlighting its value as a target for protein engineering to improve analog production in PKS pathways.
        
Title: Identification of a Thioesterase Bottleneck in the Pikromycin Pathway through Full-Module Processing of Unnatural Pentaketides Hansen DA, Koch AA, Sherman DH Ref: Journal of the American Chemical Society, 139:13450, 2017 : PubMed
Polyketide biosynthetic pathways have been engineered to generate natural product analogs for over two decades. However, manipulation of modular type I polyketide synthases (PKSs) to make unnatural metabolites commonly results in attenuated yields or entirely inactive pathways, and the mechanistic basis for compromised production is rarely elucidated since rate-limiting or inactive domain(s) remain unidentified. Accordingly, we synthesized and assayed a series of modified pikromycin (Pik) pentaketides that mimic early pathway engineering to probe the substrate tolerance of the PikAIII-TE module in vitro. Truncated pentaketides were processed with varying efficiencies to corresponding macrolactones, while pentaketides with epimerized chiral centers were poorly processed by PikAIII-TE and failed to generate 12-membered ring products. Isolation and identification of extended but prematurely offloaded shunt products suggested that the Pik thioesterase (TE) domain has limited substrate flexibility and functions as a gatekeeper in the processing of unnatural substrates. Synthesis of an analogous hexaketide with an epimerized nucleophilic hydroxyl group allowed for direct evaluation of the substrate stereoselectivity of the excised TE domain. The epimerized hexaketide failed to undergo cyclization and was exclusively hydrolyzed, confirming the TE domain as a key catalytic bottleneck. In an accompanying paper , we engineer the standalone Pik thioesterase to yield a thioesterase (TE(S148C)) and module (PikAIII-TE(S148C)) that display gain-of-function processing of substrates with inverted hydroxyl groups.
Macrolactonization of natural product analogs presents a significant challenge to both biosynthetic assembly and synthetic chemistry. In the preceding paper , we identified a thioesterase (TE) domain catalytic bottleneck processing unnatural substrates in the pikromycin (Pik) system, preventing the formation of epimerized macrolactones. Here, we perform molecular dynamics simulations showing the epimerized hexaketide was accommodated within the Pik TE active site; however, intrinsic conformational preferences of the substrate resulted in predominately unproductive conformations, in agreement with the observed hydrolysis. Accordingly, we engineered the stereoselective Pik TE to yield a variant (TE(S148C)) with improved reaction kinetics and gain-of-function processing of an unnatural, epimerized hexaketide. Quantum mechanical comparison of model TE(S148C) and TE(WT) reaction coordinate diagrams revealed a change in mechanism from a stepwise addition-elimination (TE(WT)) to a lower energy concerted acyl substitution (TE(S148C)), accounting for the gain-of-function and improved reaction kinetics. Finally, we introduced the S148C mutation into a polyketide synthase module (PikAIII-TE) to impart increased substrate flexibility, enabling the production of diastereomeric macrolactones.
Bacterial type I polyketide synthases (PKSs) assemble structurally diverse natural products of significant clinical value from simple metabolic building blocks. The synthesis of these compounds occurs in a processive fashion along a large multiprotein complex. Transfer of the acyl intermediate across interpolypeptide junctions is mediated, at least in large part, by N- and C-terminal docking domains. We report here a comprehensive analysis of the binding affinity and selectivity for the complete set of discrete docking domain pairs in the pikromycin and erythromycin PKS systems. Despite disconnection from their parent module, each cognate pair of docking domains retained exquisite binding selectivity. Further insights were obtained by X-ray crystallographic analysis of the PikAIII/PikAIV docking domain interface. This new information revealed a series of key interacting residues that enabled development of a structural model for the recently proposed H2-T2 class of polypeptides involved in PKS intermodular molecular recognition.
        
Title: The methymycin/pikromycin pathway: a model for metabolic diversity in natural product biosynthesis Kittendorf JD, Sherman DH Ref: Bioorganic & Medicinal Chemistry, 17:2137, 2009 : PubMed
The methymycin/pikromycin (Pik) macrolide pathway represents a robust metabolic system for analysis of modular polyketide biosynthesis. The enzymes that comprise this biosynthetic pathway display unprecedented substrate flexibility, combining to produce six structurally diverse macrolide antibiotics in Streptomyces venezuelae. Thus, it is appealing to consider that the pikromycin biosynthetic enzymes could be leveraged for high-throughput production of novel macrolide antibiotics. Accordingly, efforts over the past decade have focused on the detailed investigation of the six-module polyketide synthase, desosamine sugar assembly and glycosyl transfer, and the cytochrome P450 monooxygenase that is responsible for hydroxylation. This review summarizes the advances in understanding of pikromycin biosynthesis that have been gained during the course of these investigations.
The pikromycin polyketide synthase (PKS) is unique in its ability to generate both 12 and 14 membered ring macrolactones. As such, dissection of the molecular basis for controlling metabolic diversity in this system remains an important objective for understanding modular PKS function and expanding chemical diversity. Here, we describe a series of experiments designed to probe the importance of the protein-protein interaction that occurs between the final two monomodules, PikAIII (module 5) and PikAIV (module 6), for the production of the 12 membered ring macrolactone 10-deoxymethynolide. The results obtained from these in vitro studies demonstrate that PikAIII and PikAIV generate the 12 membered ring macrocycle most efficiently when engaged in their native protein-protein interaction. Accordingly, the data are consistent with PikAIV adopting an alternative conformation that enables the terminal thioesterase domain to directly off-load the PikAIII-bound hexaketide intermediate for macrocyclization.
Polyketides are a class of biologically active microbial and plant-derived metabolites that possess a high degree of structural and functional diversity and include many human therapeutics, among them anti-infective and anti-cancer drugs, growth promoters and anti-parasitic agents. The macrolide antibiotics, characterized by a glycoside-linked macrolactone, constitute an important class of polyketides, including erythromycin and the natural ketolide anti-infective agent pikromycin. Here we describe new mechanistic details of macrolactone ring formation catalyzed by the pikromycin polyketide synthase thioesterase domain from Streptomyces venezuelae. A pentaketide phosphonate mimic of the final pikromycin linear chain-elongation intermediate was synthesized and shown to be an active site affinity label. The crystal structures of the affinity-labeled enzyme and of a 12-membered-ring macrolactone product complex suggest a mechanism for cyclization in which a hydrophilic barrier in the enzyme and structural restraints of the substrate induce a curled conformation to direct macrolactone ring formation.
Polyketides are a diverse class of natural products having important clinical properties, including antibiotic, immunosuppressive and anticancer activities. They are biosynthesized by polyketide synthases (PKSs), which are modular, multienzyme complexes that sequentially condense simple carboxylic acid derivatives. The final reaction in many PKSs involves thioesterase-catalyzed cyclization of linear chain elongation intermediates. As the substrate in PKSs is presented by a tethered acyl carrier protein, introduction of substrate by diffusion is problematic, and no substrate-bound type I PKS domain structure has been reported so far. We describe the chemical synthesis of polyketide-based affinity labels that covalently modify the active site serine of excised pikromycin thioesterase from Streptomyces venezuelae. Crystal structures reported here of the affinity label-pikromycin thioesterase adducts provide important mechanistic insights. These results suggest that affinity labels can be valuable tools for understanding the mechanisms of individual steps within multifunctional PKSs and for directing rational engineering of PKS domains for combinatorial biosynthesis.
Bacterial type I polyketide synthases (PKSs) are complex, multifunctional enzymes that synthesize structurally diverse and medicinally important natural products. Given their modular organization, the manipulation of type I PKSs holds tremendous promise for the generation of novel compounds that are not easily accessible by standard synthetic chemical approaches. In theory, hybrid polyketide synthetic pathways can be constructed through the rational recombination of catalytic domains or modules from a variety of PKS systems; however, the general success of this strategy has been elusive, largely due to a poor understanding of the interactions between catalytic domains, as well as PKS modules. Over the past several years, a fundamental knowledge of these issues, and others, has begun to emerge, offering refined strategies for the facile engineering of hybrid polyketide pathways.
Two new macrolides from the pikromycin biosynthetic pathway of Streptomyces venezuelae, neopikromycin (9) and novapikromycin (10), were identified and structurally characterized through mass spectrometry and NMR spectroscopy. The established structures showed that 9 and 10 have hydroxyl groups at C-14 (9) and at both C-12 and C-14 (10), on the basis of a comparison with narbomycin (7). The purified PikC cytochrome P450 monooxygenase catalyzes the in vitro hydroxylation of 7 and pikromycin (8) to yield 9 and 10, respectively, thus expanding the substrate- and regio-flexibility of this enzyme.
        
Title: Insights into channel architecture and substrate specificity from crystal structures of two macrocycle-forming thioesterases of modular polyketide synthases Tsai SC, Lu H, Cane DE, Khosla C, Stroud RM Ref: Biochemistry, 41:12598, 2002 : PubMed
Modular polyketide synthases (PKSs) synthesize the polyketide cores of pharmacologically important natural products such as erythromycin and picromycin. Understanding PKSs at high resolution could present new opportunities for chemoenzymatic synthesis of complex molecules. The crystal structures of macrocycle-forming thioesterase (TE) domains from the picromycin synthase (PICS) and 6-deoxyerythronolide B synthase (DEBS) were determined to 1.8-3.0 A with an R(crys) of 19.2-24.4%, including three structures of PICS TE (crystallized at pH 7.6, 8.0, and 8.4) and a second crystal form of DEBS TE. As predicted by the previous work on DEBS TE [Tsai, S. C., et al. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 14808-14813], PICS TE contains an open substrate channel and a hydrophobic dimer interface. Notwithstanding their similarity, the dimer interfaces and substrate channels of DEBS TE and PICS TE reveal key differences. The structural basis for the divergent substrate specificities of DEBS TE and PICS TE is analyzed. The size of the substrate channel increases with increasing pH, presumably due to electrostatic repulsion in the channel at elevated pH. Together, these structures support previous predictions that macrocycle-forming thioesterases from PKSs share the same protein fold, an open substrate channel, a similar catalytic mechanism, and a hydrophobic dimer interface. They also provide a basis for the design of enzymes capable of catalyzing regioselective macrocyclization of natural or synthetic substrates. A series of high-resolution snapshots of a protein channel at different pHs is presented alongside analysis of channel residues, which could help in the redesign of the protein channel architecture.
        
Title: A gene cluster for macrolide antibiotic biosynthesis in streptomyces venezuelae: architecture of metabolic diversity. Xue Y, Zhao L, Liu Hw, Sherman DH Ref: Proceedings of the National Academy of Sciences of the United States of America, 95:12111, 1998 : PubMed