(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Pezizomycotina: NE > leotiomyceta: NE > Eurotiomycetes: NE > Eurotiomycetidae: NE > Eurotiales: NE > Trichocomaceae: NE > Thermomyces: NE > Thermomyces dupontii: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Thermomyces dupontii: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MRSSLVLFFVSAWTALASPVRREVSQDLFDQFNLFAQYSAAAYCAKNNDA PAGANVTCRGSICPEVEKADATFLYSFEDSGVGDVTGFLALDNTNRLIVL SFRGSRSLENWIGNINLDLKGIDDICSGCKGHDGFTSSWRSVANTLTQQV QNAVREHPDYRVVFTGHSLGGALATVAGASLRGNGYDIDVFSYGAPRVGN RAFAEFLTAQTGGTLYRITHTNDIVPRLPPRELGYSHSSPEYWITSGTLV PVTKNDIVKVEGIDSTDGNNQPNTPDIAAHLWYFGLIGTCL
Talaromyces thermophilus lipase (TTL) was found to hydrolyze monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) substrates presented in various forms to the enzyme. Different assay techniques were used for each substrate: pHstat with dioctanoyl galactolipid-bile salt mixed micelles, barostat with dilauroyl galactolipid monomolecular films spread at the air-water interface, and UV absorption using a novel MGDG substrate containing alpha-eleostearic acid as chromophore and coated on microtiter plates. The kinetic properties of TTL were compared to those of the homologous lipase from Thermomyces lanuginosus (TLL), guinea pig pancreatic lipase-related protein 2 and Fusarium solani cutinase. TTL was found to be the most active galactolipase, with a higher activity on micelles than on monomolecular films or surface-coated MGDG. Nevertheless, the UV absorption assay with coated MGDG was highly sensitive and allowed measuring significant activities with about 10ng of enzymes, against 100ng to 10mug with the pHstat. TTL showed longer lag times than TLL for reaching steady state kinetics of hydrolysis with monomolecular films or surface-coated MGDG. These findings and 3D-modelling of TTL based on the known structure of TLL pointed out to two phenylalanine to leucine substitutions in TTL, that could be responsible for its slower adsorption at lipid-water interface. TTL was found to be more active on MGDG than on DGDG using both galactolipid-bile salt mixed micelles and galactolipid monomolecular films. These later experiments suggest that the second galactose on galactolipid polar head impairs the enzyme adsorption on its aggregated substrate.
        
Title: Engineering of Talaromyces thermophilus lipase by altering its crevice-like binding site for highly efficient biocatalytic synthesis of chiral intermediate of Pregablin Ding X, Zheng RC, Tang XL, Zheng YG Ref: Bioorg Chem, 77:330, 2018 : PubMed
The scissile fatty acid binding site of lipases is divided into different sub-groups and plays an important role in the catalytic properties of the enzymes. In this study, the Talaromyces thermophilus lipase was engineered by altering its crevice-like binding site for efficient synthesis of chiral intermediate of Pregablin through kinetic resolution of 2-carboxyethyl-3-cyano-5-methylhexanoic acid ethyl ester (CNDE). The substitution of residues located at the crevice-like binding site with phenylalanine (Phe) resulted in significantly increased hydrolysis activity. The variant L206F/P207F/L259F exhibited a 37.23-fold and 47.02-fold improvement in the specific activity and turnover number (kcat) toward CNDE, respectively. Simultaneously, the optimum temperature and substrate preference were both altered in the variants. The study herein successfully engineered the TTL with improved catalytic properties for efficient biosynthesis of Pregablin intermediate. The investigation of structure-functional relationship provided important guidance for further modification of lipases with crevice-like binding site domain.
A genomic bank from Talaromyces thermophilus fungus was constructed and screened using a previously isolated fragment lipase gene as probe. From several clones isolated, the nucleotide sequence of the lipase gene (TTL gene) was completed and sequenced. The TTL coding gene consists of an open reading frame (ORF) of 1083bp encoding a protein of 269 Aa with an estimated molecular mass of 30kDa. The TTL belongs to the same gene family as Thermomyces lanuginosus lipase (TLL, Lipolase(R)), a well known lipase with multiple applications. The promoter sequence of the TTL gene showed the conservation of known consensus sequences PacC, CreA, Hap2-3-4 and the existence of a particular sequence like the binding sites of Oleate Response Element (ORE) and Fatty acids Responsis Element (FARE) which are similar to that already found to be specific of lipolytic genes in Candida and Fusarium, respectively. Northern blot analysis showed that the TTL expression was much higher on wheat bran than on olive oil as sole carbon source. Compared to the Lipolase(R), this enzyme was found to be more efficient for the hydrolysis and the synthesis of esters; and its synthetic efficiency even reached 91.6% from Waste Cooking Oil triglycerides.