(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Pezizomycotina: NE > leotiomyceta: NE > sordariomyceta: NE > Sordariomycetes: NE > Sordariomycetidae: NE > Sordariales: NE > Chaetomiaceae: NE > Thielavia: NE > Thielavia terrestris: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MRAISCTLIAAACGTATGVSLAARQGGAGNATIQCAAIPSPFPTWQQLPQ QSTLPDPFLPLKYTTPSDAQNIMAGKGQGRVQTPDEWYQCRQPEILQMLQ EYQYGYYPDHSQEKVEATRSGTTLNIAVTAGDKTGSFKASFTLPSGASAS KPAPVVINIGGMQNQPYLSAGIAIAQFDYTSVAPDSNSKTGAFWSIYNGR DIGVLTAWAWGFHRVLDAINMTVPEIDATRVGVTGCSRLGKGALAAGLFD KRITLTMPMSSGVQGMGPYRYYTMSGQGENLENSKQGAPWWTDSTLGTFV NHAENLPYDAHTIAAAIAPRALVIDQGTGDQFTNSKATAVIIYPAAKLVY DWLGVGDQIAMSVRSGGHCDMSGYTSVLPYVQKIFFGTPTNKDYNSLGSY GSPITTAYPWATATPPSKAA
References
Title: Expression and characterization of two glucuronoyl esterases from Thielavia terrestris and their application in enzymatic hydrolysis of corn bran Tang J, Long L, Cao Y, Ding S Ref: Applied Microbiology & Biotechnology, 103:3037, 2019 : PubMed
The thermophilic fungus Thielavia terrestris when cultured on cellulose produces a cocktail of thermal hydrolases with potential application in saccharification of lignocellulosic biomass and other biotechnological areas. Glucuronoyl esterases are considered to play a unique role as accessory enzymes in lignocellulosic material biodegradation by cleaving the covalent ester linkage between 4-O-methyl-D-glucuronic acid (MeGlcA) and lignin in lignin-carbohydrate complexes (LCCs). Two glucuronoyl esterases from T. terrestris named TtGE1 and TtGE2 were expressed in Pichia pastoris. Both esterases displayed features of thermophilic enzymes, with the optimal temperature at 45 degrees C and 55 degrees C. TtGE1 and TtGE2 exhibited activity towards methyl (4-nitrophenyl beta-D-glucopyranosid) uronate (Me-GlcA-pNP) but no catalytic activity to benzyl-D-glucuronate (BnzGlcA), indicating the difference in substrate specificity from previously studied fungal GEs. A substantial increase in the release of monomeric sugars and glucuronic acid from autohydrolysis of corn bran was observed by the supplementing TtGEs into commercial xylanase; the results clearly demonstrated that the TtGEs played a significant role in this degradation process. This research on TtGEs enriches our knowledge of this novel class of fungal GEs. These newly characterized TtGEs could be used as promising accessory enzymes to improve the hydrolysis efficiency of commercial enzymes in saccharification of lignocellulosic materials due to their thermophilic characteristics.
Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.