(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Viridiplantae: NE > Streptophyta: NE > Streptophytina: NE > Embryophyta: NE > Tracheophyta: NE > Euphyllophyta: NE > Spermatophyta: NE > Magnoliophyta: NE > Mesangiospermae: NE > eudicotyledons: NE > Gunneridae: NE > Pentapetalae: NE > rosids: NE > fabids: NE > Fabales: NE > Fabaceae: NE > Papilionoideae: NE > 50 kb inversion clade: NE > NPAAA clade: NE > Hologalegina: NE > IRL clade: NE > Trifolieae: NE > Trifolium: NE > Trifolium pratense: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MVQEKKLVEDVYGWLRIYDDGSVDRTWRGPPEAKFMIDPVAPHEQFIEGV ATRDVTTAMITTNEGSIHRARLYLPEKTTKDNKKLPIVIHFHGGGFCITE ANSYMYYHVYTKFVRCTRSICVSPFLRQAPEHRLPAAIDDGLATLQWLQL VARGDACDPWLEEHGDFNKVFLIGDSTGGNLVHEVAARVGSVDLSPVRLV GAIPIHPGFVRSVRSRSEIELPQSPFQTLDMLDKLLNLALPVGSNKDHPF TCPMGAAAPPLDGLKLPSFLLCIAEKDLMRDTEMEYYEAMKKANKEIDLF VSEGMAHAFYLNKIAVDMDPKVSAQMDALIGRVKEFIEKH
Red clover (Trifolium pratense) is an important forage plant worldwide. This study was directed to broadening current knowledge of red clover's coding regions and enhancing its utilization in practice by specific reanalysis of previously published assembly. A total of 42,996 genes were characterized using Illumina paired-end sequencing after manual revision of Blast2GO annotation. Genes were classified into metabolic and biosynthetic pathways in response to biological processes, with 7,517 genes being assigned to specific pathways. Moreover, 17,727 enzymatic nodes in all pathways were described. We identified 6,749 potential microsatellite loci in red clover coding sequences, and we characterized 4,005 potential simple sequence repeat (SSR) markers as generating polymerase chain reaction products preferentially within 100-350 bp. Marker density of 1 SSR marker per 12.39 kbp was achieved. Aligning reads against predicted coding sequences resulted in the identification of 343,027 single nucleotide polymorphism (SNP) markers, providing marker density of one SNP marker per 144.6 bp. Altogether, 95 SSRs in coding sequences were analyzed for 50 red clover varieties and a collection of 22 highly polymorphic SSRs with pooled polymorphism information content >0.9 was generated, thus obtaining primer pairs for application to diversity studies in T. pratense. A set of 8,623 genome-wide distributed SNPs was developed and used for polymorphism evaluation in individual plants. The polymorphic information content ranged from 0 to 0.375. Temperature switch PCR was successfully used in single-marker SNP genotyping for targeted coding sequences and for heterozygosity or homozygosity confirmation in validated five loci. Predicted large sets of SSRs and SNPs throughout the genome are key to rapidly implementing genome-based breeding approaches, for identifying genes underlying key traits, and for genome-wide association studies. Detailed knowledge of genetic relationships among breeding material can also be useful for breeders in planning crosses or for plant variety protection. Single-marker assays are useful for diagnostic applications.
        
Title: Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae) Istvanek J, Jaros M, Krenek A, Repkova J Ref: Am J Bot, 101:327, 2014 : PubMed
PREMISE OF THE STUDY: Red clover (Trifolium pratense) is an important forage plant from the legume family with great importance in agronomy and livestock nourishment. Nevertheless, assembling its medium-sized genome presents a challenge, given current hardware and software possibilities. Next-generation sequencing technologies enable us to generate large amounts of sequence data at low cost. In this study, the genome assembly and red clover genome features are presented. METHODS: First, assembly software was assessed using data sets from a closely related species to find the best possible combination of assembler plus error correction program to assemble the red clover genome. The newly sequenced genome was characterized by repetitive content, number of protein-coding and nonprotein-coding genes, and gene families and functions. Genome features were also compared with those of other sequenced plant species. KEY RESULTS: Abyss with Echo correction was used for de novo assembly of the red clover genome. The presented assembly comprises approximately 314.6 Mbp. In contrast to leguminous species with comparable genome sizes, the genome of T. pratense contains a larger repetitive portion and more abundant retrotransposons and DNA transposons. Overall, 47 398 protein-coding genes were annotated from 64 761 predicted genes. Comparative analysis revealed several gene families that are characteristic for T. pratense. Resistance genes, leghemoglobins, and nodule-specific cystein-rich peptides were identified and compared with other sequenced species. CONCLUSIONS: The presented red clover genomic data constitute a resource for improvement through molecular breeding and for comparison to other sequenced plant species.