Other strains: Escherichia coli (strains O6; UTI89/UPEC; E110019;MS 198-1; MS 185-1; MS 21-1; MS 175-1; MS 200-1; FVEC1302; MS 45-1; MS 196-1; 83972; 53638; F11; NC101; O45:K1/S88/ExPEC; O44:H18/042/EAEC; O18:K1:H7/IHE3034/ExPEC; O7:K1/IAI39/ExPEC; O1:K1/APEC; O81/ED1a; O26:H11/11368/EHEC; O17:K52:H18/UMN026/ExPEC; 55989; O6:K15:H31/536/UPEC; MS 84-1; MS 45-1; MS 182-1; 3_2_53FAA; O150:H5/SE15)
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Gammaproteobacteria: NE > Enterobacterales: NE > Yersiniaceae: NE > Yersinia: NE > Yersinia pseudotuberculosis complex: NE > Yersinia pestis: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Yersinia pestis Antiqua: N, E.
Yersinia pestis Pestoides F: N, E.
Yersinia pestis Angola: N, E.
Yersinia pestis Nepal516: N, E.
Yersinia pestis biovar Antiqua str. B42003004: N, E.
Yersinia pestis biovar Orientalis str. MG05-1020: N, E.
Yersinia pestis biovar Mediaevalis str. K1973002: N, E.
Yersinia pestis D106004: N, E.
Yersinia pestis Pestoides A: N, E.
Yersinia pestis D182038: N, E.
Yersinia pestis biovar Orientalis str. IP275: N, E.
Yersinia pestis KIM D27: N, E.
Yersinia pestis biovar Orientalis str. F1991016: N, E.
Yersinia pestis biovar Orientalis str. PEXU2: N, E.
Yersinia pestis biovar Orientalis str. India 195: N, E.
Yersinia pestis biovar Antiqua str. UG05-0454: N, E.
Yersinia pestis biovar Antiqua str. E1979001: N, E.
Yersinia pestis CA88-4125: N, E.
Yersinia pestis biovar Medievalis str. Harbin 35: N, E.
Yersinia pestis Z176003: N, E.
Yersinia pestis biovar Microtus str. 91001: N, E.
Yersinia pestis biovar Medievalis str. 91001: N, E.
Yersinia pestis A1122: N, E.
Yersinia pestis PY-100: N, E.
Yersinia pestis PY-96: N, E.
Yersinia pestis 24H: N, E.
Yersinia pestis PY-52: N, E.
Yersinia pestis PY-99: N, E.
Yersinia pestis PY-66: N, E.
Yersinia pestis PY-13: N, E.
Yersinia pestis PY-47: N, E.
Yersinia pestis PY-04: N, E.
Yersinia pestis EV NIIEG: N, E.
Yersinia pestis PY-09: N, E.
Yersinia pestis PY-19: N, E.
Yersinia pestis PY-46: N, E.
Yersinia pestis PY-12: N, E.
Yersinia pestis PY-71: N, E.
Yersinia pestis PY-90: N, E.
Yersinia pestis PY-06: N, E.
Yersinia pestis 9: N, E.
Yersinia pestis PY-89: N, E.
Yersinia pestis S3: N, E.
Yersinia pestis PY-58: N, E.
Yersinia pestis PY-55: N, E.
Yersinia pestis PY-15: N, E.
Yersinia pestis PY-36: N, E.
Yersinia pestis PY-60: N, E.
Yersinia pestis PY-103: N, E.
Yersinia pestis PY-56: N, E.
Yersinia pestis PY-64: N, E.
Yersinia pestis PY-92: N, E.
Yersinia pestis PY-93: N, E.
Yersinia pestis PY-53: N, E.
Yersinia pestis PY-54: N, E.
Yersinia pestis PY-16: N, E.
Yersinia pestis PY-95: N, E.
Yersinia pestis PY-48: N, E.
Yersinia pestis PY-34: N, E.
Yersinia pestis PY-59: N, E.
Yersinia pestis PY-113: N, E.
Yersinia pestis PY-102: N, E.
Yersinia pestis PY-65: N, E.
Yersinia pestis PY-11: N, E.
Yersinia pestis 113: N, E.
Yersinia pestis PY-08: N, E.
Yersinia pestis PY-25: N, E.
Yersinia pestis PY-14: N, E.
Yersinia pestis PY-01: N, E.
Yersinia pestis PY-29: N, E.
Yersinia pestis PY-61: N, E.
Yersinia pestis PY-76: N, E.
Yersinia pestis PY-03: N, E.
Yersinia pestis PY-91: N, E.
Yersinia pestis PY-07: N, E.
Yersinia pestis PY-02: N, E.
Yersinia pestis PY-88: N, E.
Yersinia pestis PY-63: N, E.
Yersinia pestis PY-72: N, E.
Yersinia pestis PY-10: N, E.
Yersinia pestis PY-05: N, E.
Yersinia pestis PY-45: N, E.
Yersinia pestis INS: N, E.
Yersinia pestis PY-32: N, E.
Yersinia pestis PY-42: N, E.
Yersinia pestis PY-94: N, E.
Yersinia pestis PY-98: N, E.
Yersinia pestis PY-101: N, E.
Yersinia pseudotuberculosis IP 31758: N, E.
Yersinia pseudotuberculosis YPIII: N, E.
Yersinia pseudotuberculosis PB1/+: N, E.
Yersinia pseudotuberculosis: N, E.
Yersinia pseudotuberculosis IP 32953: N, E.
Yersinia pseudotuberculosis NBRC 105692: N, E.
Escherichia coli O6: N, E.
Escherichia coli SE15: N, E.
Escherichia sp. 3_2_53FAA: N, E.
Escherichia coli MS 182-1: N, E.
Escherichia coli MS 45-1: N, E.
Escherichia coli MS 84-1: N, E.
Escherichia coli 536: N, E.
Escherichia coli 55989: N, E.
Escherichia coli UMN026: N, E.
Escherichia coli O26:H11 str. 11368: N, E.
Escherichia coli IAI39: N, E.
Escherichia coli ED1a: N, E.
Escherichia coli APEC O1: N, E.
Escherichia coli IHE3034: N, E.
Escherichia coli 042: N, E.
Escherichia coli 53638: N, E.
Escherichia coli S88: N, E.
Escherichia coli NC101: N, E.
Escherichia coli F11: N, E.
Escherichia coli: N, E.
Escherichia coli MS 145-7: N, E.
Escherichia coli NA114: N, E.
Escherichia coli SMS-3-5: N, E.
Escherichia coli B088: N, E.
Escherichia coli B354: N, E.
Escherichia coli IAI1: N, E.
Escherichia coli O111:H- str. 11128: N, E.
Escherichia coli DH1: N, E.
Escherichia coli O55:H7 str. CB9615: N, E.
Escherichia coli O103:H2 str. 12009: N, E.
Escherichia coli BL21: N, E.
Escherichia coli B str. REL606: N, E.
Escherichia coli O157:H7 str. TW14359: N, E.
Escherichia coli BL21(DE3): N, E.
Escherichia coli MS 185-1: N, E.
Escherichia coli O157:H7 str. EC4501: N, E.
Escherichia coli FVEC1302: N, E.
Escherichia coli O157:H7 str. EC508: N, E.
Escherichia coli W: N, E.
Escherichia coli B171: N, E.
Escherichia coli O157:H7 str. EC4076: N, E.
Escherichia coli O157:H7 str. EC4113: N, E.
Escherichia coli MS 187-1: N, E.
Escherichia coli O157:H7 str. EC869: N, E.
Escherichia coli O157:H7 str. EC4486: N, E.
Escherichia coli 83972: N, E.
Escherichia coli MS 198-1: N, E.
Escherichia coli O157:H7 str. EC4401: N, E.
Escherichia coli KO11FL: N, E.
Escherichia coli MS 196-1: N, E.
Escherichia coli MS 119-7: N, E.
Escherichia coli O157:H7 str. EC4196: N, E.
Escherichia coli MS 116-1: N, E.
Escherichia coli MS 115-1: N, E.
Escherichia coli O157:H7 str. TW14588: N, E.
Escherichia coli E110019: N, E.
Escherichia coli MS 175-1: N, E.
Escherichia coli 101-1: N, E.
Escherichia coli B185: N, E.
Escherichia coli UTI89: N, E.
Escherichia coli E24377A: N, E.
Escherichia coli O127:H6 str. E2348/69: N, E.
Escherichia coli O157:H7 str. EC4115: N, E.
Escherichia coli BW2952: N, E.
Escherichia coli str. K-12 substr. DH10B: N, E.
Escherichia coli HS: N, E.
Escherichia coli ATCC 8739: N, E.
Escherichia coli SE11: N, E.
Escherichia coli E22: N, E.
Escherichia coli MS 200-1: N, E.
Escherichia coli B7A: N, E.
Escherichia coli MS 21-1: N, E.
Escherichia coli FVEC1412: N, E.
Escherichia coli MS 107-1: N, E.
Escherichia coli MS 69-1: N, E.
Escherichia coli K-12: N, E.
Escherichia coli O111:H-: N, E.
Escherichia coli ETEC 1392/75: N, E.
Escherichia coli O26:H-: N, E.
Escherichia coli Vir68: N, E.
Escherichia coli EC4100B: N, E.
Escherichia coli WV_060327: N, E.
Escherichia coli O157:H7 str. EC1212: N, E.
Escherichia coli RN587/1: N, E.
Escherichia coli 1357: N, E.
Escherichia coli 1180: N, E.
Escherichia coli LT-68: N, E.
Escherichia coli E128010: N, E.
Escherichia coli EPECa14: N, E.
Escherichia coli O157:H- str. 493-89: N, E.
Escherichia coli O157:H- str. H 2687: N, E.
Escherichia coli O55:H7 str. 3256-97: N, E.
Escherichia coli O55:H7 str. USDA 5905: N, E.
Escherichia coli O157:H7 str. LSU-61: N, E.
Escherichia coli MS 146-1: N, E.
Escherichia coli MS 78-1: N, E.
Escherichia coli MS 124-1: N, E.
Escherichia coli ABU 83972: N, E.
Escherichia coli UM146: N, E.
Escherichia coli O157:H7 str. EC4206: N, E.
Escherichia coli O157:H7 str. EC4045: N, E.
Escherichia coli O157:H7 str. EC4042: N, E.
Escherichia coli 1827-70: N, E.
Escherichia coli ETEC H10407: N, E.
Escherichia coli 2362-75: N, E.
Escherichia coli O83:H1 str. NRG 857C: N, E.
Escherichia coli MS 110-3: N, E.
Escherichia coli MS 153-1: N, E.
Escherichia coli MS 16-3: N, E.
Escherichia coli 3431: N, E.
Escherichia coli MS 85-1: N, E.
Escherichia coli O157:H7 str. G5101: N, E.
Escherichia coli O157:H7: N, E.
Escherichia coli 96.154: N, E.
Escherichia coli DEC7B: N, E.
Escherichia coli DEC3E: N, E.
Escherichia coli 907446: N, E.
Escherichia coli E1167: N, E.
Escherichia coli BWH 34: N, E.
Escherichia coli H730: N, E.
Escherichia coli DEC13D: N, E.
Escherichia coli HVH 78 (4-2735946): N, E.
Escherichia coli UMEA 4075-1: N, E.
Escherichia coli STEC_S1191: N, E.
Escherichia coli 97.0246: N, E.
Escherichia coli TA206: N, E.
Escherichia coli HVH 177 (4-2876612): N, E.
Escherichia coli str. 'clone D i2': N, E.
Escherichia coli DEC3A: N, E.
Escherichia coli KTE25: N, E.
Escherichia coli DEC10A: N, E.
Escherichia coli 95.0183: N, E.
Escherichia coli O25b:H4-ST131 str. EC958: N, E.
Escherichia coli 3.2303: N, E.
Escherichia coli HVH 90 (4-3191362): N, E.
Escherichia coli KTE106: N, E.
Escherichia coli KTE173: N, E.
Escherichia coli HVH 115 (4-4465989): N, E.
Escherichia coli MS 60-1: N, E.
Escherichia coli KTE15: N, E.
Escherichia coli DEC7E: N, E.
Escherichia coli STEC_EH250: N, E.
Escherichia coli 907700: N, E.
Escherichia coli DEC10C: N, E.
Escherichia coli KTE215: N, E.
Escherichia coli 3030-1: N, E.
Escherichia coli DEC15B: N, E.
Escherichia coli KTE162: N, E.
Escherichia coli DEC3D: N, E.
Escherichia coli KTE186: N, E.
Escherichia coli 93.0624: N, E.
Escherichia coli TW10509: N, E.
Escherichia coli DEC9E: N, E.
Escherichia coli 1.2264: N, E.
Escherichia coli KTE43: N, E.
Escherichia coli B41: N, E.
Escherichia coli DEC11B: N, E.
Escherichia coli UMEA 3244-1: N, E.
Escherichia coli 908632: N, E.
Escherichia coli DEC13C: N, E.
Escherichia coli DEC5E: N, E.
Escherichia coli TW07793: N, E.
Escherichia coli H494: N, E.
Escherichia coli DEC2A: N, E.
Escherichia coli H397: N, E.
Escherichia coli DEC3F: N, E.
Escherichia coli HVH 138 (4-6066704): N, E.
Escherichia coli IS35: N, E.
Escherichia coli 9.0111: N, E.
Escherichia coli DEC7C: N, E.
Escherichia coli STEC_H.1.8: N, E.
Escherichia coli DEC2D: N, E.
Escherichia coli KTE89: N, E.
Escherichia coli 99.0848: N, E.
Escherichia coli HVH 202 (4-3163997): N, E.
Escherichia coli 4.0522: N, E.
Escherichia coli 5.0959: N, E.
Escherichia coli O55:H7 str. RM12579: N, E.
Escherichia coli CFT073: N, E.
Escherichia coli DEC8C: N, E.
Escherichia coli DEC3C: N, E.
Escherichia coli KTE169: N, E.
Escherichia coli CB7326: N, E.
Escherichia coli O104:H4 str. 01-09591: N, E.
Escherichia coli O157:H7 str. 1125: N, E.
Escherichia coli SCI-07: N, E.
Escherichia coli DEC10E: N, E.
Escherichia coli TA007: N, E.
Escherichia coli 2534-86: N, E.
Escherichia coli 3.3884: N, E.
Escherichia coli DEC6B: N, E.
Escherichia coli O104:H4 str. 11-4522: N, E.
Escherichia coli KTE16: N, E.
Escherichia coli KTE195: N, E.
Escherichia coli 0.1288: N, E.
Escherichia coli O104:H4 str. LB226692: N, E.
Escherichia coli ISC41: N, E.
Escherichia coli G58-1: N, E.
Escherichia coli DEC11D: N, E.
Escherichia coli O157:H7 str. 1044: N, E.
Escherichia coli UMEA 3108-1: N, E.
Escherichia coli 900105 (10e): N, E.
Escherichia coli 2.3916: N, E.
Escherichia coli DEC9D: N, E.
Escherichia coli AA86: N, E.
Escherichia coli O104:H4 str. 11-4623: N, E.
Escherichia coli DEC1A: N, E.
Escherichia coli DEC14B: N, E.
Escherichia coli TA271: N, E.
Escherichia coli TA124: N, E.
Escherichia coli DEC14C: N, E.
Escherichia coli HVH 176 (4-3428664): N, E.
Escherichia coli HVH 24 (4-5985145): N, E.
Escherichia coli XH001: N, E.
Escherichia coli HVH 141 (4-5995973): N, E.
Escherichia coli HVH 4 (4-7276109): N, E.
Escherichia coli KTE28: N, E.
Escherichia coli DEC4C: N, E.
Escherichia coli DEC8B: N, E.
Escherichia coli E101: N, E.
Escherichia coli KTE145: N, E.
Escherichia coli DEC4B: N, E.
Escherichia coli DEC8D: N, E.
Escherichia coli EC1868: N, E.
Escherichia coli DEC15A: N, E.
Escherichia coli DEC2E: N, E.
Escherichia coli KTE133: N, E.
Escherichia coli IS29: N, E.
Escherichia coli HVH 108 (4-6924867): N, E.
Escherichia coli DEC12B: N, E.
Escherichia coli TA143: N, E.
Escherichia coli H120: N, E.
Escherichia coli KTE207: N, E.
Escherichia coli AI27: N, E.
Escherichia coli Bd5610_99: N, E.
Escherichia coli KTE216: N, E.
Escherichia coli DEC12D: N, E.
Escherichia coli DEC13A: N, E.
Escherichia coli KTE93: N, E.
Escherichia coli KTE102: N, E.
Escherichia coli DEC2C: N, E.
Escherichia coli UMNF18: N, E.
Escherichia coli DEC10B: N, E.
Escherichia coli HVH 21 (4-4517873): N, E.
Escherichia coli UMEA 3155-1: N, E.
Escherichia coli EC4437: N, E.
Escherichia coli HVH 17 (4-7473087): N, E.
Escherichia coli 5.0588: N, E.
Escherichia coli O104:H4 str. 11-4632 C2: N, E.
Escherichia coli KTE88: N, E.
Escherichia coli HVH 162 (4-5627982): N, E.
Escherichia coli KTE211: N, E.
Escherichia coli B093: N, E.
Escherichia coli 3.2608: N, E.
Escherichia coli STEC_MHI813: N, E.
Escherichia coli JJ1886: N, E.
Escherichia coli NE1487: N, E.
Escherichia coli DEC5B: N, E.
Escherichia coli DEC11E: N, E.
Escherichia coli KTE109: N, E.
Escherichia coli B799: N, E.
Escherichia coli STEC_7v: N, E.
Escherichia coli O104:H4 str. 11-4632 C5: N, E.
Escherichia coli DEC15D: N, E.
Escherichia coli DEC9B: N, E.
Escherichia coli DEC6C: N, E.
Escherichia coli KTE175: N, E.
Escherichia coli KTE18: N, E.
Escherichia coli 1.2741: N, E.
Escherichia coli KTE168: N, E.
Escherichia coli DEC15C: N, E.
Escherichia coli 908624: N, E.
Escherichia coli BIDMC 20B: N, E.
Escherichia coli STEC_DG131-3: N, E.
Escherichia coli DEC8E: N, E.
Escherichia coli DEC15E: N, E.
Escherichia coli LAU-EC7: N, E.
Escherichia coli W26: N, E.
Escherichia coli DEC13E: N, E.
Escherichia coli O104:H4 str. C236-11: N, E.
Escherichia coli KTE183: N, E.
Escherichia coli 907779: N, E.
Escherichia coli TW14313: N, E.
Escherichia coli E1520: N, E.
Escherichia coli KTE23: N, E.
Escherichia coli KTE139: N, E.
Escherichia coli MS 57-2: N, E.
Escherichia coli KTE49: N, E.
Escherichia coli O7:K1 str. CE10: N, E.
Escherichia coli J53: N, E.
Escherichia coli 96.0497: N, E.
Escherichia coli O104:H4 str. 11-3677: N, E.
Escherichia coli H263: N, E.
Escherichia coli BIDMC 38: N, E.
Escherichia coli DEC14D: N, E.
Escherichia coli M605: N, E.
Escherichia coli KTE191: N, E.
Escherichia coli BWH 24: N, E.
Escherichia coli STEC_94C: N, E.
Escherichia coli UMEA 3193-1: N, E.
Escherichia coli KTE150: N, E.
Escherichia coli DEC4A: N, E.
Escherichia coli UMEA 3391-1: N, E.
Escherichia coli DEC12C: N, E.
Escherichia coli KTE86: N, E.
Escherichia coli KTE189: N, E.
Escherichia coli B49-2: N, E.
Escherichia coli HVH 38 (4-2774682): N, E.
Escherichia coli DEC7D: N, E.
Escherichia coli HVH 205 (4-3094677): N, E.
Escherichia coli M718: N, E.
Escherichia coli H591: N, E.
Escherichia coli 908691: N, E.
Escherichia coli 2-005-03_S4_C2: N, E.
Escherichia coli HVH 111 (4-7039018): N, E.
Escherichia coli DEC5C: N, E.
Escherichia coli KTE6: N, E.
Escherichia coli BIDMC 20A: N, E.
Escherichia coli JB1-95: N, E.
Escherichia coli DEC9A: N, E.
Escherichia coli DEC6E: N, E.
Escherichia coli O104:H4 str. 11-4632 C3: N, E.
Escherichia coli DEC11C: N, E.
Escherichia coli O104:H4 str. 04-8351: N, E.
Escherichia coli 907701: N, E.
Escherichia coli cloneA_i1: N, E.
Escherichia coli DEC6D: N, E.
Escherichia coli O32:H37 str. P4: N, E.
Escherichia coli DEC1C: N, E.
Escherichia coli DEC10D: N, E.
Escherichia coli DEC7A: N, E.
Escherichia coli KTE192: N, E.
Escherichia coli DEC12E: N, E.
Escherichia coli H252: N, E.
Escherichia coli DEC4F: N, E.
Escherichia coli DEC6A: N, E.
Escherichia coli O104:H4 str. 09-7901: N, E.
Escherichia coli UMEA 3693-1: N, E.
Escherichia coli HVH 146 (4-3189767): N, E.
Escherichia coli KTE194: N, E.
Escherichia coli 2.4168: N, E.
Escherichia coli H736: N, E.
Escherichia coli KTE104: N, E.
Escherichia coli DEC2B: N, E.
Escherichia coli UMEA 3805-1: N, E.
Escherichia coli HVH 154 (4-5636698): N, E.
Escherichia coli DEC13B: N, E.
Escherichia coli DEC3B: N, E.
Escherichia coli O104:H4 str. 11-4632 C1: N, E.
Escherichia coli HVH 171 (4-3191958): N, E.
Escherichia coli HVH 186 (4-3405044): N, E.
Escherichia coli 908524: N, E.
Escherichia coli KTE70: N, E.
Escherichia coli DEC5D: N, E.
Escherichia coli O104:H4 str. 11-4632 C4: N, E.
Escherichia coli DEC1D: N, E.
Escherichia coli H489: N, E.
Shigella sp. D9: N, E.
Escherichia coli 3003: N, E.
Escherichia coli O81:NM str. 02-3012: N, E.
Escherichia coli DEC8A: N, E.
Escherichia coli O104:H4 str. C227-11: N, E.
Escherichia coli DEC14A: N, E.
Escherichia coli KTE17: N, E.
Escherichia coli TX1999: N, E.
Escherichia coli 4.0967: N, E.
Escherichia coli DEC11A: N, E.
Escherichia coli UMNK88: N, E.
Escherichia coli STEC_B2F1: N, E.
Escherichia coli ECC-1470: N, E.
Escherichia coli UMEA 3185-1: N, E.
Escherichia coli STEC_C165-02: N, E.
Escherichia coli KTE224: N, E.
Escherichia coli DEC10F: N, E.
Escherichia coli DEC4E: N, E.
Escherichia coli E482: N, E.
Escherichia coli KTE217: N, E.
Escherichia coli HVH 143 (4-5674999): N, E.
Escherichia coli DEC1E: N, E.
Escherichia coli O104:H21 str. CFSAN002236: N, E.
Escherichia coli 4_1_47FAA: N, E.
Escherichia coli DEC5A: N, E.
Escherichia coli UMEA 3955-1: N, E.
Escherichia coli Xuzhou21: N, E.
Escherichia coli HVH 228 (4-7787030): N, E.
Escherichia coli str. K-12 substr. MDS42: N, E.
Escherichia coli KTE72: N, E.
Escherichia coli DEC12A: N, E.
Escherichia coli H299: N, E.
Escherichia coli KTE148: N, E.
Escherichia coli CAG:4: N, E.
Escherichia coli HVH 84 (4-1021478): N, E.
Escherichia coli BIDMC 83: N, E.
Escherichia coli PCN033: N, E.
Escherichia coli HVH 197 (4-4466217): N, E.
Escherichia coli DEC4D: N, E.
Escherichia coli MS 117-3: N, E.
Escherichia coli M863: N, E.
Escherichia coli KTE75: N, E.
Escherichia coli KTE113: N, E.
Escherichia coli O104:H4 str. 11-4404: N, E.
Escherichia coli DEC1B: N, E.
Escherichia coli KTE178: N, E.
Escherichia coli O104:H21 str. 94-3025: N, E.
Escherichia coli 2-005-03_S4_C3: N, E.
Escherichia coli DEC9C: N, E.
Escherichia coli str. 'clone D i14': N, E.
Escherichia coli O139:H28 str. E24377A: N, E.
Escherichia coli OK1357: N, E.
Escherichia coli OK1180: N, E.
Escherichia coli KOEGE 61 (174a): N, E.
Escherichia coli HVH 33 (4-2174936): N, E.
Escherichia coli KTE98: N, E.
Escherichia coli TW09098: N, E.
Escherichia coli M919: N, E.
Escherichia coli HVH 79 (4-2512823): N, E.
Escherichia coli SEPT362: N, E.
Escherichia coli O08: N, E.
Escherichia coli ISC56: N, E.
Escherichia coli D9: N, E.
Escherichia coli ISC11: N, E.
Escherichia coli 1-176-05_S3_C2: N, E.
Escherichia coli O145:H28 str. RM12581: N, E.
Escherichia coli O145:NM str. 2010C-3526: N, E.
Escherichia coli UCI 65: N, E.
Escherichia coli 5-366-08_S1_C3: N, E.
Escherichia coli 5-366-08_S1_C1: N, E.
Escherichia coli 1-250-04_S3_C2: N, E.
Escherichia coli UMEA 3162-1: N, E.
Escherichia coli O157:H7 str. SS52: N, E.
Escherichia coli APEC O18: N, E.
Escherichia coli N37122PS: N, E.
Escherichia coli N37139PS: N, E.
Escherichia coli N36410PS: N, E.
Escherichia coli M056: N, E.
Escherichia coli TA447: N, E.
Escherichia coli H461: N, E.
Escherichia coli H605: N, E.
Escherichia coli TA054: N, E.
Escherichia coli TA249: N, E.
Escherichia coli KTE21: N, E.
Escherichia coli KTE76: N, E.
Escherichia coli KTE146: N, E.
Escherichia coli 3.4880: N, E.
Escherichia coli KTE20: N, E.
Escherichia coli KTE182: N, E.
Escherichia coli HVH 25 (4-5851939): N, E.
Escherichia coli HVH 41 (4-2677849): N, E.
Escherichia coli HVH 70 (4-2963531): N, E.
Escherichia coli UMEA 3200-1: N, E.
Escherichia coli UMEA 3718-1: N, E.
Escherichia coli 113290: N, E.
Escherichia coli 110957: N, E.
Escherichia coli 907713: N, E.
Escherichia coli 907672: N, E.
Escherichia coli 908519: N, E.
Escherichia coli 908525: N, E.
Escherichia coli 908573: N, E.
Escherichia coli UMEA 3323-1: N, E.
Escherichia coli 97.0259: N, E.
Escherichia coli LAU-EC10: N, E.
Escherichia coli 1-182-04_S3_C3: N, E.
Escherichia coli 3-373-03_S4_C2: N, E.
Escherichia coli 2-011-08_S1_C1: N, E.
Escherichia coli M114: N, E.
Escherichia coli TA280: N, E.
Escherichia coli KTE66: N, E.
Escherichia coli DORA_A_5_14_21: N, E.
Escherichia coli D6-113.11: N, E.
Escherichia coli O174:H8 str. 04-3038: N, E.
Escherichia coli O111:NM str. K6722: N, E.
Escherichia coli O69:H11 str. 08-4661: N, E.
Escherichia coli O118:H16 str. 2009C-4446: N, E.
Escherichia coli O26:H11: N, E.
Escherichia coli O121:H19 str. 2010C-3609: N, E.
Escherichia coli N36254PS: N, E.
Escherichia coli SHECO001: N, E.
Escherichia coli H420: N, E.
Escherichia coli O111:H8 str. CVM9634: N, E.
Escherichia coli O111:H11 str. CVM9455: N, E.
Escherichia coli KTE193: N, E.
Escherichia coli KTE112: N, E.
Escherichia coli KTE64: N, E.
Escherichia coli KTE100: N, E.
Escherichia coli 99.0741: N, E.
Escherichia coli ATCC BAA-2209: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MTQSAMCIPLWPARNGNTAHLVMCPFAGGSSSAFRHWQAEQLTDCALSLV TWPGRDRLRHLEPLRSITQLAALLANELEASVSPDTPLLLAGHSMGAQVA FETCRLLEQRGLAPQGLIISGCHAPHLHSERQLSHRDDADFIAELIDIGG CSPELRENQELMSLFLPLLRADFYATESYHYDSPDVCPPLRTPALLLCGS HDREASWQQVDAWRQWLSHVTGPVVIDGDHFYPIQQARSFFTQIVRHFPH AFSAMTALQKQPSTSER
References
11 moreTitle: YbtT is a low-specificity type II thioesterase that maintains production of the metallophore yersiniabactin in pathogenic enterobacteria Ohlemacher SI, Xu Y, Kober DL, Malik M, Nix JC, Brett TJ, Henderson JP Ref: Journal of Biological Chemistry, 293:19572, 2018 : PubMed
Clinical isolates of Yersinia, Klebsiella, and Escherichia coli frequently secrete the small molecule metallophore yersiniabactin (Ybt), which passivates and scavenges transition metals during human infections. YbtT is encoded within the Ybt biosynthetic operon and is critical for full Ybt production in bacteria. However, its biosynthetic function has been unclear because it is not essential for Ybt production by the in vitro reconstituted nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) pathway. Here, we report the structural and biochemical characterization of YbtT. YbtT structures at 1.4-1.9 A resolution possess a serine hydrolase catalytic triad and an associated substrate chamber with features similar to those previously reported for low-specificity type II thioesterases (TEIIs). We found that YbtT interacts with the two major Ybt biosynthetic proteins, HMWP1 (high-molecular-weight protein 1) and HMWP2 (high-molecular-weight protein 2), and hydrolyzes a variety of aromatic and acyl groups from their phosphopantetheinylated carrier protein domains. In vivo YbtT titration in uropathogenic E. coli revealed a distinct optimum for Ybt production consistent with a tradeoff between clearing both stalled inhibitory intermediates and productive Ybt precursors from HMWP1 and HMWP2. These results are consistent with a model in which YbtT maintains cellular Ybt biosynthesis by removing nonproductive, inhibitory thioesters that form aberrantly at multiple sites on HMWP1 and HMWP2.
The Gram-negative bacterium Yersinia pestis is the causative agent of the systemic invasive infectious disease classically referred to as plague, and has been responsible for three human pandemics: the Justinian plague (sixth to eighth centuries), the Black Death (fourteenth to nineteenth centuries) and modern plague (nineteenth century to the present day). The recent identification of strains resistant to multiple drugs and the potential use of Y. pestis as an agent of biological warfare mean that plague still poses a threat to human health. Here we report the complete genome sequence of Y. pestis strain CO92, consisting of a 4.65-megabase (Mb) chromosome and three plasmids of 96.2 kilobases (kb), 70.3 kb and 9.6 kb. The genome is unusually rich in insertion sequences and displays anomalies in GC base-composition bias, indicating frequent intragenomic recombination. Many genes seem to have been acquired from other bacteria and viruses (including adhesins, secretion systems and insecticidal toxins). The genome contains around 150 pseudogenes, many of which are remnants of a redundant enteropathogenic lifestyle. The evidence of ongoing genome fluidity, expansion and decay suggests Y. pestis is a pathogen that has undergone large-scale genetic flux and provides a unique insight into the ways in which new and highly virulent pathogens evolve.
BACKGROUND: Virulence in the pathogenic bacterium Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that this system is highly conserved among the pathogenic Yersinia. Yersiniabactin contains a phenolic group and three five-membered thiazole heterocycles that serve as iron ligands. RESULTS: The entire Y. pestis yersiniabactin region has been sequenced. Sequence analysis of yersiniabactin biosynthetic regions (irp2-ybtE and ybtS) reveals a strategy for siderophore production using a mixed polyketide synthase/nonribosomal peptide synthetase complex formed between HMWP1 and HMWP2 (encoded by irp1 and irp2). The complex contains 16 domains, five of them variants of phosphopantetheine-modified peptidyl carrier protein or acyl carrier protein domains. HMWP1 and HMWP2 also contain methyltransferase and heterocyclization domains. Mutating ybtS revealed that this gene encodes a protein essential for yersiniabactin synthesis. CONCLUSIONS: The HMWP1 and HMWP2 domain organization suggests that the yersiniabactin siderophore is assembled in a modular fashion, in which a series of covalent intermediates are passed from the amino terminus of HMWP2 to the carboxyl terminus of HMWP1. Biosynthetic labeling studies indicate that the three yersiniabactin methyl moieties are donated by S-adenosylmethionine and that the linker between the thiazoline and thiazolidine rings is derived from malonyl-CoA. The salicylate moiety is probably synthesized using the aromatic amino-acid biosynthetic pathway, the final step of which converts chorismate to salicylate. YbtS might be necessary for converting chorismate to salicylate.
        
11 lessTitle: YbtT is a low-specificity type II thioesterase that maintains production of the metallophore yersiniabactin in pathogenic enterobacteria Ohlemacher SI, Xu Y, Kober DL, Malik M, Nix JC, Brett TJ, Henderson JP Ref: Journal of Biological Chemistry, 293:19572, 2018 : PubMed
Clinical isolates of Yersinia, Klebsiella, and Escherichia coli frequently secrete the small molecule metallophore yersiniabactin (Ybt), which passivates and scavenges transition metals during human infections. YbtT is encoded within the Ybt biosynthetic operon and is critical for full Ybt production in bacteria. However, its biosynthetic function has been unclear because it is not essential for Ybt production by the in vitro reconstituted nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) pathway. Here, we report the structural and biochemical characterization of YbtT. YbtT structures at 1.4-1.9 A resolution possess a serine hydrolase catalytic triad and an associated substrate chamber with features similar to those previously reported for low-specificity type II thioesterases (TEIIs). We found that YbtT interacts with the two major Ybt biosynthetic proteins, HMWP1 (high-molecular-weight protein 1) and HMWP2 (high-molecular-weight protein 2), and hydrolyzes a variety of aromatic and acyl groups from their phosphopantetheinylated carrier protein domains. In vivo YbtT titration in uropathogenic E. coli revealed a distinct optimum for Ybt production consistent with a tradeoff between clearing both stalled inhibitory intermediates and productive Ybt precursors from HMWP1 and HMWP2. These results are consistent with a model in which YbtT maintains cellular Ybt biosynthesis by removing nonproductive, inhibitory thioesters that form aberrantly at multiple sites on HMWP1 and HMWP2.
BACKGROUND: Escherichia coli can experience a multifaceted life, in some cases acting as a commensal while in other cases causing intestinal and/or extraintestinal disease. Several studies suggest enteroaggregative E. coli are the predominant cause of E. coli-mediated diarrhea in the developed world and are second only to Campylobacter sp. as a cause of bacterial-mediated diarrhea. Furthermore, enteroaggregative E. coli are a predominant cause of persistent diarrhea in the developing world where infection has been associated with malnourishment and growth retardation. METHODS: In this study we determined the complete genomic sequence of E. coli 042, the prototypical member of the enteroaggregative E. coli, which has been shown to cause disease in volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains revealing previously uncharacterised virulence factors including a variety of secreted proteins and a capsular polysaccharide biosynthetic locus. In addition, by using Biolog Phenotype Microarrays we have provided a full metabolic profiling of E. coli 042 and the non-pathogenic lab strain E. coli K-12. We have highlighted the genetic basis for many of the metabolic differences between E. coli 042 and E. coli K-12. CONCLUSION: This study provides a genetic context for the vast amount of experimental and epidemiological data published thus far and provides a template for future diagnostic and intervention strategies.
Extraintestinal pathogenic Escherichia coli (ExPEC) are a common cause of disease in both mammals and birds. A vaccine to prevent such infections would be desirable given the increasing antibiotic resistance of these bacteria. We have determined the genome sequence of ExPEC IHE3034 (ST95) isolated from a case of neonatal meningitis and compared this to available genome sequences of other ExPEC strains and a few nonpathogenic E. coli. We found 19 genomic islands present in the genome of IHE3034, which are absent in the nonpathogenic E. coli isolates. By using subtractive reverse vaccinology we identified 230 antigens present in ExPEC but absent (or present with low similarity) in nonpathogenic strains. Nine antigens were protective in a mouse challenge model. Some of them were also present in other pathogenic non-ExPEC strains, suggesting that a broadly protective E. coli vaccine may be possible. The gene encoding the most protective antigen was detected in most of the E. coli isolates, highly conserved in sequence and found to be exported by a type II secretion system which seems to be nonfunctional in nonpathogenic strains.
Escherichia coli SE15 (O150:H5) is a human commensal bacterium recently isolated from feces of a healthy adult and classified into E. coli phylogenetic group B2, which includes the majority of extraintestinal pathogenic E. coli. Here, we report the finished and annotated genome sequence of this organism.
Among the various pathogenic Escherichia coli strains, enterohemorrhagic E. coli (EHEC) is the most devastating. Although serotype O157:H7 strains are the most prevalent, strains of different serotypes also possess similar pathogenic potential. Here, we present the results of a genomic comparison between EHECs of serotype O157, O26, O111, and O103, as well as 21 other, fully sequenced E. coli/Shigella strains. All EHECs have much larger genomes (5.5-5.9 Mb) than the other strains and contain surprisingly large numbers of prophages and integrative elements (IEs). The gene contents of the 4 EHECs do not follow the phylogenetic relationships of the strains, and they share virulence genes for Shiga toxins and many other factors. We found many lambdoid phages, IEs, and virulence plasmids that carry the same or similar virulence genes but have distinct evolutionary histories, indicating that independent acquisition of these mobile genetic elements has driven the evolution of each EHEC. Particularly interesting is the evolution of the type III secretion system (T3SS). We found that the T3SS of EHECs is composed of genes that were introduced by 3 different types of genetic elements: an IE referred to as the locus of enterocyte effacement, which encodes a central part of the T3SS; SpLE3-like IEs; and lambdoid phages carrying numerous T3SS effector genes and other T3SS-related genes. Our data demonstrate how E. coli strains of different phylogenies can independently evolve into EHECs, providing unique insights into the mechanisms underlying the parallel evolution of complex virulence systems in bacteria.
The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the approximately 18,000 families of orthologous genes, we found approximately 2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome.
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include human uropathogenic E. coli (UPEC) and avian pathogenic E. coli (APEC). Regardless of host of origin, ExPEC strains share many traits. It has been suggested that these commonalities may enable APEC to cause disease in humans. Here, we begin to test the hypothesis that certain APEC strains possess potential to cause human urinary tract infection through virulence genotyping of 1,000 APEC and UPEC strains, generation of the first complete genomic sequence of an APEC (APEC O1:K1:H7) strain, and comparison of this genome to all available human ExPEC genomic sequences. The genomes of APEC O1 and three human UPEC strains were found to be remarkably similar, with only 4.5% of APEC O1's genome not found in other sequenced ExPEC genomes. Also, use of multilocus sequence typing showed that some of the sequenced human ExPEC strains were more like APEC O1 than other human ExPEC strains. This work provides evidence that at least some human and avian ExPEC strains are highly similar to one another, and it supports the possibility that a food-borne link between some APEC and UPEC strains exists. Future studies are necessary to assess the ability of APEC to overcome the hurdles necessary for such a food-borne transmission, and epidemiological studies are required to confirm that such a phenomenon actually occurs.
Escherichia coli is a model laboratory bacterium, a species that is widely distributed in the environment, as well as a mutualist and pathogen in its human hosts. As such, E. coli represents an attractive organism to study how environment impacts microbial genome structure and function. Uropathogenic E. coli (UPEC) must adapt to life in several microbial communities in the human body, and has a complex life cycle in the bladder when it causes acute or recurrent urinary tract infection (UTI). Several studies designed to identify virulence factors have focused on genes that are uniquely represented in UPEC strains, whereas the role of genes that are common to all E. coli has received much less attention. Here we describe the complete 5,065,741-bp genome sequence of a UPEC strain recovered from a patient with an acute bladder infection and compare it with six other finished E. coli genome sequences. We searched 3,470 ortholog sets for genes that are under positive selection only in UPEC strains. Our maximum likelihood-based analysis yielded 29 genes involved in various aspects of cell surface structure, DNA metabolism, nutrient acquisition, and UTI. These results were validated by resequencing a subset of the 29 genes in a panel of 50 urinary, periurethral, and rectal E. coli isolates from patients with UTI. These studies outline a computational approach that may be broadly applicable for studying strain-specific adaptation and pathogenesis in other bacteria.
The genome of uropathogenic Escherichia coli isolate 536 contains five well-characterized pathogenicity islands (PAIs) encoding key virulence factors of this strain. Except PAI IV(536), the four other PAIs of strain 536 are flanked by direct repeats (DRs), carry intact integrase genes and are able to excise site-specifically from the chromosome. Genome screening of strain 536 identified a sixth putative asnW-associated PAI. Despite the presence of DRs and an intact integrase gene, excision of this island was not detected. To investigate the role of PAI-encoded integrases for the recombination process the int genes of each unstable island of strain 536 were inactivated. For PAI I(536) and PAI II(536), their respective P4-like integrase was required for their excision. PAI III(536) carries two integrase genes, intA, encoding an SfX-like integrase, and intB, coding for an integrase with weak similarity to P4-like integrases. Only intB was required for site-specific excision of this island. For PAI V(536), excision could not be abolished after deleting its P4-like integrase gene but additional deletion of the PAI II(536)-specific integrase gene was required. Therefore, although all mediated by P4-like integrases, the activity of the PAI excision machinery is most often restricted to its cognate island. This work also demonstrates for the first time the existence of a cross-talk between integrases of different PAIs and shows that this cross-talk is unidirectional.
Yersinia pestis, the causative agent of plague, is a highly uniform clone that diverged recently from the enteric pathogen Yersinia pseudotuberculosis. Despite their close genetic relationship, they differ radically in their pathogenicity and transmission. Here, we report the complete genomic sequence of Y. pseudotuberculosis IP32953 and its use for detailed genome comparisons with available Y. pestis sequences. Analyses of identified differences across a panel of Yersinia isolates from around the world reveal 32 Y. pestis chromosomal genes that, together with the two Y. pestis-specific plasmids, to our knowledge, represent the only new genetic material in Y. pestis acquired since the the divergence from Y. pseudotuberculosis. In contrast, 149 other pseudogenes (doubling the previous estimate) and 317 genes absent from Y. pestis were detected, indicating that as many as 13% of Y. pseudotuberculosis genes no longer function in Y. pestis. Extensive insertion sequence-mediated genome rearrangements and reductive evolution through massive gene loss, resulting in elimination and modification of preexisting gene expression pathways, appear to be more important than acquisition of genes in the evolution of Y. pestis. These results provide a sobering example of how a highly virulent epidemic clone can suddenly emerge from a less virulent, closely related progenitor.
We present the complete genome sequence of Yersinia pestis KIM, the etiologic agent of bubonic and pneumonic plague. The strain KIM, biovar Mediaevalis, is associated with the second pandemic, including the Black Death. The 4.6-Mb genome encodes 4,198 open reading frames (ORFs). The origin, terminus, and most genes encoding DNA replication proteins are similar to those of Escherichia coli K-12. The KIM genome sequence was compared with that of Y. pestis CO92, biovar Orientalis, revealing homologous sequences but a remarkable amount of genome rearrangement for strains so closely related. The differences appear to result from multiple inversions of genome segments at insertion sequences, in a manner consistent with present knowledge of replication and recombination. There are few differences attributable to horizontal transfer. The KIM and E. coli K-12 genome proteins were also compared, exposing surprising amounts of locally colinear "backbone," or synteny, that is not discernible at the nucleotide level. Nearly 54% of KIM ORFs are significantly similar to K-12 proteins, with conserved housekeeping functions. However, a number of E. coli pathways and transport systems and at least one global regulator were not found, reflecting differences in lifestyle between them. In KIM-specific islands, new genes encode candidate pathogenicity proteins, including iron transport systems, putative adhesins, toxins, and fimbriae.
We present the complete genome sequence of uropathogenic Escherichia coli, strain CFT073. A three-way genome comparison of the CFT073, enterohemorrhagic E. coli EDL933, and laboratory strain MG1655 reveals that, amazingly, only 39.2% of their combined (nonredundant) set of proteins actually are common to all three strains. The pathogen genomes are as different from each other as each pathogen is from the benign strain. The difference in disease potential between O157:H7 and CFT073 is reflected in the absence of genes for type III secretion system or phage- and plasmid-encoded toxins found in some classes of diarrheagenic E. coli. The CFT073 genome is particularly rich in genes that encode potential fimbrial adhesins, autotransporters, iron-sequestration systems, and phase-switch recombinases. Striking differences exist between the large pathogenicity islands of CFT073 and two other well-studied uropathogenic E. coli strains, J96 and 536. Comparisons indicate that extraintestinal pathogenic E. coli arose independently from multiple clonal lineages. The different E. coli pathotypes have maintained a remarkable synteny of common, vertically evolved genes, whereas many islands interrupting this common backbone have been acquired by different horizontal transfer events in each strain.
The Gram-negative bacterium Yersinia pestis is the causative agent of the systemic invasive infectious disease classically referred to as plague, and has been responsible for three human pandemics: the Justinian plague (sixth to eighth centuries), the Black Death (fourteenth to nineteenth centuries) and modern plague (nineteenth century to the present day). The recent identification of strains resistant to multiple drugs and the potential use of Y. pestis as an agent of biological warfare mean that plague still poses a threat to human health. Here we report the complete genome sequence of Y. pestis strain CO92, consisting of a 4.65-megabase (Mb) chromosome and three plasmids of 96.2 kilobases (kb), 70.3 kb and 9.6 kb. The genome is unusually rich in insertion sequences and displays anomalies in GC base-composition bias, indicating frequent intragenomic recombination. Many genes seem to have been acquired from other bacteria and viruses (including adhesins, secretion systems and insecticidal toxins). The genome contains around 150 pseudogenes, many of which are remnants of a redundant enteropathogenic lifestyle. The evidence of ongoing genome fluidity, expansion and decay suggests Y. pestis is a pathogen that has undergone large-scale genetic flux and provides a unique insight into the ways in which new and highly virulent pathogens evolve.
BACKGROUND: Virulence in the pathogenic bacterium Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that this system is highly conserved among the pathogenic Yersinia. Yersiniabactin contains a phenolic group and three five-membered thiazole heterocycles that serve as iron ligands. RESULTS: The entire Y. pestis yersiniabactin region has been sequenced. Sequence analysis of yersiniabactin biosynthetic regions (irp2-ybtE and ybtS) reveals a strategy for siderophore production using a mixed polyketide synthase/nonribosomal peptide synthetase complex formed between HMWP1 and HMWP2 (encoded by irp1 and irp2). The complex contains 16 domains, five of them variants of phosphopantetheine-modified peptidyl carrier protein or acyl carrier protein domains. HMWP1 and HMWP2 also contain methyltransferase and heterocyclization domains. Mutating ybtS revealed that this gene encodes a protein essential for yersiniabactin synthesis. CONCLUSIONS: The HMWP1 and HMWP2 domain organization suggests that the yersiniabactin siderophore is assembled in a modular fashion, in which a series of covalent intermediates are passed from the amino terminus of HMWP2 to the carboxyl terminus of HMWP1. Biosynthetic labeling studies indicate that the three yersiniabactin methyl moieties are donated by S-adenosylmethionine and that the linker between the thiazoline and thiazolidine rings is derived from malonyl-CoA. The salicylate moiety is probably synthesized using the aromatic amino-acid biosynthetic pathway, the final step of which converts chorismate to salicylate. YbtS might be necessary for converting chorismate to salicylate.