Strigolactones and karrikins are butenolide molecules that regulate plant growth. They are perceived via the alpha/beta-hydrolase DWARF14 (D14) and its homologue KARRIKIN INSENSITIVE2 (KAI2), respectively. Plant-derived strigolactones have a butenolide ring with a methyl group that is essential for bioactivity. By contrast, karrikins are abiotic in origin, and the butenolide methyl group is non-essential. KAI2 is probably a receptor for an endogenous butenolide, but the identity of this compound remains unknown. Here we characterise the specificity of KAI2 towards differing butenolide ligands using genetic and biochemical approaches. We find that KAI2 proteins from multiple species are most sensitive to desmethyl butenolides that lack a methyl group. Desmethyl-GR24 and desmethyl-CN-debranone are active via KAI2 but not D14. They are more potent KAI2 agonists than their methyl-substituted reference compounds both in vitro and in plants. The preference of KAI2 for desmethyl butenolides is conserved in Selaginella moellendorffii and Marchantia polymorpha, suggesting that it is an ancient trait in land plant evolution. Our findings provide insight into the mechanistic basis for differential ligand perception by KAI2 and D14, and support the view that the endogenous substrates for KAI2 and D14 have distinct chemical structures and biosynthetic origins.
        
Title: New branching inhibitors and their potential as strigolactone mimics in rice Fukui K, Ito S, Ueno K, Yamaguchi S, Kyozuka J, Asami T Ref: Bioorganic & Medicinal Chemistry Lett, 21:4905, 2011 : PubMed
Strigolactones (SLs) are rhizosphere communication chemicals. Recent studies of highly branched mutants revealed that SL or its metabolites work as a phytohormone to inhibit shoot branching. When SLs are exogenously applied to the rice d10-1 mutant that has a highly branched phenotype caused by a defect in the SL biosynthesis gene (CCD8), they inhibit tiller bud outgrowth (branching in rice) of the mutant. We focused our attention on the SL function as a phytohormone and tried to find new chemicals mimicking the hormonal action of SL by screening chemicals that inhibit branching of rice d10-1 mutant. Fortunately, we found 5-(4-chlorophenoxy)-3-methylfuran-2(5H)-one (3a) as a new chemical possessing SL-like activity against the rice d10-1 mutant. Then, we prepared several derivatives of 3a (3b-3k) to examine their ability to inhibit shoot branching of rice d10-1. These derivatives were synthesized by a one-pot coupling reaction between phenols and halo butenolide to give 5-phenoxy 3-methylfuran-2(5H)-one (3) derivatives, which possess a common substructure with SLs. Some of the derivatives showed SL-like activity more potently than GR24, a typical SL derivative, in a rice assay. As SLs also show activity by inducing seed germination of root parasitic plants, the induction activity of these derivatives was also evaluated. Here we report the structure-activity relationships of these compounds.