Epoxyeicosatrienoic acids (EETs) cause vascular relaxation by activating smooth muscle large conductance Ca(2+)-activated K(+) (K(Ca)) channels. EETs are metabolized to dihydroxyeicosatrienoic acids (DHETs) by epoxide hydrolase. We examined the contribution of 14,15-DHET to 14,15-EET-induced relaxations and characterized its mechanism of action. 14,15-DHET relaxed U-46619-precontracted bovine coronary artery rings but was approximately fivefold less potent than 14,15-EET. The relaxations were inhibited by charybdotoxin, iberiotoxin, and increasing extracellular K(+) to 20 mM. In isolated smooth muscle cells, 14,15-DHET increased an iberiotoxin-sensitive, outward K(+) current and increased K(Ca) channel activity in cell-attached patches and inside-out patches only when GTP was present. 14,15-[(14)C]EET methyl ester (Me) was converted to 14,15-[(14)C]DHET-Me, 14,15-[(14)C]DHET, and 14,15-[(14)C]EET by coronary arterial rings and endothelial cells but not by smooth muscle cells. The metabolism to 14,15-DHET was inhibited by the epoxide hydrolase inhibitors 4-phenylchalcone oxide (4-PCO) and BIRD-0826. Neither inhibitor altered relaxations to acetylcholine, whereas relaxations to 14,15-EET-Me were increased slightly by BIRD-0826 but not by 4-PCO. 14,15-DHET relaxes coronary arteries through activation of K(Ca) channels. Endothelial cells, but not smooth muscle cells, convert EETs to DHETs, and this conversion results in a loss of vasodilator activity.
        
Title: Leukotoxin-diol: a putative toxic mediator involved in acute respiratory distress syndrome Zheng J, Plopper CG, Lakritz J, Storms DH, Hammock BD Ref: American Journal of Respiratory Cellular & Molecular Biology, 25:434, 2001 : PubMed
Leukotoxin is clinically associated with acute respiratory distress syndrome (ARDS). Recently, we found that leukotoxin-diol, the hydrated product of leukotoxin, is more toxic than the parent leukotoxin in vitro (Moghaddam and colleagues, Nature Med. 1997;3:562-566). To test if this difference in the toxicity of leukotoxin and leukotoxin-diol exists in vivo, Swiss Webster mice were administered leukotoxin or leukotoxin-diol. All mice treated with leukotoxin-diol died of ARDS-like respiratory distress, whereas the animals exposed to leukotoxin at the same dose survived. Histopathologic evaluation of the lungs revealed massive alveolar edema and hemorrhage with interstitial edema around blood vessels in the lungs of mice treated with leukotoxin-diol, whereas the lungs of mice treated with identical doses of leukotoxin had perivascular edema only and little change in alveolar spaces. Immunohistochemistry showed that the soluble epoxide hydrolase responsible for the hydrolysis of leukotoxin to its diol is concentrated in the vascular smooth muscle of small and medium-sized pulmonary vessels. In addition, 4-phenylchalcone oxide, an inhibitor of soluble epoxide hydrolase, was found to decrease the mortality induced by leukotoxin but had no effect on mortality induced by leukotoxin-diol. These studies provide strong in vivo evidence that leukotoxin may act as a protoxicant and that the corresponding diol is a putative toxic mediator involved in the development of ARDS.
Cytochrome P-450-derived epoxyeicosatrienoic acids (EETs) are avidly incorporated into and released from endothelial phospholipids, a process that results in potentiation of endothelium-dependent relaxation. EETs are also rapidly converted by epoxide hydrolases to dihydroxyeicosatrienoic acid (DHETs), which are incorporated into phospholipids to a lesser extent than EETs. We hypothesized that epoxide hydrolases functionally regulate EET incorporation into endothelial phospholipids. Porcine coronary artery endothelial cells were treated with an epoxide hydrolase inhibitor, 4-phenylchalcone oxide (4-PCO, 20 micromol/l), before being incubated with (3)H-labeled 14,15-EET (14,15-[(3)H]EET). 4-PCO blocked conversion of 14,15-[(3)H]EET to 14,15-[(3)H]DHET and doubled the amount of radiolabeled products incorporated into cell lipids, with >80% contained in phospholipids. Moreover, pretreatment with 4-PCO before incubation with 14,15-[(3)H]EET enhanced A-23187-induced release of radiolabeled products into the medium. In contrast, 4-PCO did not alter uptake, distribution, or release of [(3)H]arachidonic acid. In porcine coronary arteries, 4-PCO augmented 14,15-EET-induced potentiation of endothelium-dependent relaxation to bradykinin. These data suggest that epoxide hydrolases may play a role in regulating EET incorporation into phospholipids, thereby modulating endothelial function in the coronary vasculature.
        
2 lessTitle: Role of epoxy-fatty acids and epoxide hydrolases in the pathology of neuro-inflammation Kodani SD, Morisseau C Ref: Biochimie, 159:59, 2019 : PubMed
Neuroinflammation is a physiologic response aimed at protecting the central nervous system during injury. However, unresolved and chronic neuroinflammation can lead to long term damage and eventually neurologic disease including Parkinson's disease, Alzheimer's disease and dementia. Recently, enhancing the concentration of epoxyeicosatrienoic acids (EETs) through blocking their hydrolytic degradation by soluble epoxide hydrolase (sEH) has been applied towards reducing the long-term damage associated with central neurologic insults. Evidence suggests this protective effect is mediated, at least in part, through polarization of microglia to an anti-inflammatory phenotype that blocks the inflammatory actions of prostaglandins and promotes wound repair. This mini-review overviews the epidemiologic basis for using sEH inhibition towards neuroinflammatory disease and pharmacologic studies testing sEH inhibition in several neurologic diseases. Additionally, the combination of sEH inhibition with other eicosanoid signaling pathways is considered as an enhanced approach for developing potent neuroprotectants.
        
Title: Inhibition of soluble epoxide hydrolase after cardiac arrest/cardiopulmonary resuscitation induces a neuroprotective phenotype in activated microglia and improves neuronal survival Wang J, Fujiyoshi T, Kosaka Y, Raybuck JD, Lattal KM, Ikeda M, Herson PS, Koerner IP Ref: Journal of Cerebral Blood Flow & Metabolism, 33:1574, 2013 : PubMed
Cardiac arrest (CA) causes hippocampal neuronal death that frequently leads to severe loss of memory function in survivors. No specific treatment is available to reduce neuronal death and improve functional outcome. The brain's inflammatory response to ischemia can exacerbate injury and provides a potential treatment target. We hypothesized that microglia are activated by CA and contribute to neuronal loss. We used a mouse model to determine whether pharmacologic inhibition of the proinflammatory microglial enzyme soluble epoxide hydrolase (sEH) after CA alters microglial activation and neuronal death. The sEH inhibitor 4-phenylchalcone oxide (4-PCO) was administered after successful cardiopulmonary resuscitation (CPR). The 4-PCO treatment significantly reduced neuronal death and improved memory function after CA/CPR. We found early activation of microglia and increased expression of inflammatory tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta in the hippocampus after CA/CPR, which was unchanged after 4-PCO treatment, while expression of antiinflammatory IL-10 increased significantly. We conclude that sEH inhibition after CA/CPR can alter the transcription profile in activated microglia to selectively induce antiinflammatory and neuroprotective IL-10 and reduce subsequent neuronal death. Switching microglial gene expression toward a neuroprotective phenotype is a promising new therapeutic approach for ischemic brain injury.
        
Title: 14,15-Dihydroxyeicosatrienoic acid relaxes bovine coronary arteries by activation of K(Ca) channels Campbell WB, Deeter C, Gauthier KM, Ingraham RH, Falck JR, Li PL Ref: American Journal of Physiology Heart Circ Physiol, 282:H1656, 2002 : PubMed
Epoxyeicosatrienoic acids (EETs) cause vascular relaxation by activating smooth muscle large conductance Ca(2+)-activated K(+) (K(Ca)) channels. EETs are metabolized to dihydroxyeicosatrienoic acids (DHETs) by epoxide hydrolase. We examined the contribution of 14,15-DHET to 14,15-EET-induced relaxations and characterized its mechanism of action. 14,15-DHET relaxed U-46619-precontracted bovine coronary artery rings but was approximately fivefold less potent than 14,15-EET. The relaxations were inhibited by charybdotoxin, iberiotoxin, and increasing extracellular K(+) to 20 mM. In isolated smooth muscle cells, 14,15-DHET increased an iberiotoxin-sensitive, outward K(+) current and increased K(Ca) channel activity in cell-attached patches and inside-out patches only when GTP was present. 14,15-[(14)C]EET methyl ester (Me) was converted to 14,15-[(14)C]DHET-Me, 14,15-[(14)C]DHET, and 14,15-[(14)C]EET by coronary arterial rings and endothelial cells but not by smooth muscle cells. The metabolism to 14,15-DHET was inhibited by the epoxide hydrolase inhibitors 4-phenylchalcone oxide (4-PCO) and BIRD-0826. Neither inhibitor altered relaxations to acetylcholine, whereas relaxations to 14,15-EET-Me were increased slightly by BIRD-0826 but not by 4-PCO. 14,15-DHET relaxes coronary arteries through activation of K(Ca) channels. Endothelial cells, but not smooth muscle cells, convert EETs to DHETs, and this conversion results in a loss of vasodilator activity.
        
Title: Leukotoxin-diol: a putative toxic mediator involved in acute respiratory distress syndrome Zheng J, Plopper CG, Lakritz J, Storms DH, Hammock BD Ref: American Journal of Respiratory Cellular & Molecular Biology, 25:434, 2001 : PubMed
Leukotoxin is clinically associated with acute respiratory distress syndrome (ARDS). Recently, we found that leukotoxin-diol, the hydrated product of leukotoxin, is more toxic than the parent leukotoxin in vitro (Moghaddam and colleagues, Nature Med. 1997;3:562-566). To test if this difference in the toxicity of leukotoxin and leukotoxin-diol exists in vivo, Swiss Webster mice were administered leukotoxin or leukotoxin-diol. All mice treated with leukotoxin-diol died of ARDS-like respiratory distress, whereas the animals exposed to leukotoxin at the same dose survived. Histopathologic evaluation of the lungs revealed massive alveolar edema and hemorrhage with interstitial edema around blood vessels in the lungs of mice treated with leukotoxin-diol, whereas the lungs of mice treated with identical doses of leukotoxin had perivascular edema only and little change in alveolar spaces. Immunohistochemistry showed that the soluble epoxide hydrolase responsible for the hydrolysis of leukotoxin to its diol is concentrated in the vascular smooth muscle of small and medium-sized pulmonary vessels. In addition, 4-phenylchalcone oxide, an inhibitor of soluble epoxide hydrolase, was found to decrease the mortality induced by leukotoxin but had no effect on mortality induced by leukotoxin-diol. These studies provide strong in vivo evidence that leukotoxin may act as a protoxicant and that the corresponding diol is a putative toxic mediator involved in the development of ARDS.
Cytochrome P-450-derived epoxyeicosatrienoic acids (EETs) are avidly incorporated into and released from endothelial phospholipids, a process that results in potentiation of endothelium-dependent relaxation. EETs are also rapidly converted by epoxide hydrolases to dihydroxyeicosatrienoic acid (DHETs), which are incorporated into phospholipids to a lesser extent than EETs. We hypothesized that epoxide hydrolases functionally regulate EET incorporation into endothelial phospholipids. Porcine coronary artery endothelial cells were treated with an epoxide hydrolase inhibitor, 4-phenylchalcone oxide (4-PCO, 20 micromol/l), before being incubated with (3)H-labeled 14,15-EET (14,15-[(3)H]EET). 4-PCO blocked conversion of 14,15-[(3)H]EET to 14,15-[(3)H]DHET and doubled the amount of radiolabeled products incorporated into cell lipids, with >80% contained in phospholipids. Moreover, pretreatment with 4-PCO before incubation with 14,15-[(3)H]EET enhanced A-23187-induced release of radiolabeled products into the medium. In contrast, 4-PCO did not alter uptake, distribution, or release of [(3)H]arachidonic acid. In porcine coronary arteries, 4-PCO augmented 14,15-EET-induced potentiation of endothelium-dependent relaxation to bradykinin. These data suggest that epoxide hydrolases may play a role in regulating EET incorporation into phospholipids, thereby modulating endothelial function in the coronary vasculature.